

Secure Assembly Coding

Week # 1 Lectures

Dr. Qasem Abu Al-Haija, Department of Cybersecurity,

Basic information about the course

☐ Course Name and Code:

✓ Secure Assembly Coding – 15232

☐ Main Textbook:

- ✓ Kip R. Irvine. Assembly Language for x86 Processors, 8th edition, 2019.
- ✓B. Dang, A. Gazet, E. Bachaalany. Practical Reverse Engineering: x86, x64, ARM, Windows® Kernel, Reversing Tools, and Obfuscation. John Wiley & Sons, June 2014. ISBN: 978-1-118-78731-1

☐ Instructor Information:

- ✓ Name: Dr. Qasem Abu Al-Haija.
- ✓ Email: q.abualhaija@psut.edu.jo
- ✓ Department: Department of Cybersecurity.

Prerequisites and Grading

- ☐ Prerequisite Course:
 - ✓ CS 11103 (Structured Programming)
- ☐ Prerequisite Skills:
 - ✓ Number representation systems (decimal, binary, octal, hexadecimal).
 - ✓ Arithmetic operations in binary, octal and hexadecimal.
 - ✓ Some skills in Logic Circuits and design.
 - ✓ Clocking, Chips, ICs data Sheets, and Pin Diagrams.
 - ✓ Computer skills to prepare written reports and graphing, and data presentation.

☐ Grading Policy:

Assessment Tool	Expected Due Date	Weight
Midterm Exam	To be decided	30%
Class Activities	Quizzes and Assignments	30%
Final Exam	To be decided	40%

Student Responsibilities

☐ Attendance Policy

✓ In accordance with the University Regulations, it is the student's responsibility to be punctual and to attend all classes.

☐ Cheating and Plagiarism

✓ Plagiarism: Using the words, thoughts, ideas, results, etc., of another person in a written assignment, without acknowledging the source, as if it were the student's own work.

Course Regulations

- ☐ A Student is completely prohibited from doing any of the following:
 - ✓ Copying, attempting to copy, from another student's work (exams or others)
 - ✓ Permitting another student to copy from your work.
 - ✓ Using notes of whatever kind during closed book examinations.
 - ✓ Disrupting the conduct of examinations by any illegal action.
- ☐ A Student is recommended of doing the following:
 - ✓ Please use email whenever possible for your inquiries and appointments.
 - ✓ Please read the assigned materials and lecture notes before each class.
 - ✓ Class participation and interaction with instructor are very essential.
 - ✓ You are responsible for downloading and printing lecture notes or other materials

Overview of previous concepts (signal, logic design, ...)

What is signals- Overview

Signal in electronics is:

- Electric current or electromagnetic field used to convey data between places.
- -The simplest form of signal is a direct current (DC) that is switched on and off.

Examples of signals

- Analog: Speech, Music, Photos, Videos, Sonar, Radar, Temperature calibration …
- Digital: digitized speech, digitized Music, digitized Images, digitized radar...

What is Signal Processing?

Signals - Overview

Analogue Devices

Speakers

Thermometer

Desktop PC

Digital Camera

IPad

MP3 Player

What Is Digital Logic Design?

- The use of **numbers** and **codes** to produce input & output operations.
- Numbers such as: binary and Hex. Codes such as Gray, Excess-3 and BCD.
- Digital designers can develop various simple/complex applications.
- Hardware consists of a few simple building blocks => logic gates.
- logic gates are either two-state (H, L) or Tri-state (H, L, Z).
- Gates are built using transistors such as AND gate requires 3 transistors.
- Many Logical functions can be composed of basic logic gates.
- Functions expressed as: Truth table, Boolean expression, Graphical.
- Functions can be optimized using **Boolean algebra** or **K- Maps**.
- Boolean equations can be expressed as: SOM, POM, SOP, POS

- Group of gates to accomplish a specific task => integrated circuit-IC
- Integration levels differ according to the complexity of logic circuit.
 - SSI (small scale integration): Introduced in late 1960s, 1-10 gates.
 - MSI (medium scale integration): introduced in late 1960s, 10-100 gates
 - LSI (large scale integration) introduced in early 1970s, 100-10,000 gates
 - VLSI (very LSI) Introduced in late 1970s, More than 10,000 gates.
- Digital logic design can be combinational (CLD) or sequential SLD).
 - CLD composed from gates, no feedback, output depends on input only.
 - SLD composed from gates, flip-flops, with feedback, output depends on input and previous state.

Combinational design

Sequential Design

E.G. COUNTERS, REGISTERS, MEMORIES

Data Storage Measurement Units

Big Data (BD)

Microprocessors (μP)- Overview

- μP: Electronic chip that functions as CPU of a computer.
- μP: Heart of any computer system (or brain).
- μ P based systems with limited resources => μ computers.
- µPs are now exist in almost all electronic machines in different forms
- - Computer printers, automobiles, washing machines, microwave ovens, mobile phones, fax machines, satellites, etc.,

Microprocessors (μP)- Overview

- Almost all µPs use the concept of "Stored Program Execution".
 - Instructions stored sequentially in memory locations.
 - $-\mu$ P fetches instructions one by one & executes them it in its ALU.
- A μ P can be programmed to do any task.
 - Programmer has to know about internal resources & features of μP .
 - Programmer has to understand the instructions supported by the μP .
- Every µP supports its own Instructions-Set (Manufacturer-Based).
 - Mnemonic form (Assembly code) or binary form (Machine code).
 - Assembly is converted to Machine codes vi "Assembler".

Assembly	Machine Code	
SUB AX,BX	001010111000011	
MOV CX, AX	100010111001000	
MOV DX,0	10111010000000000000000	

Microprocessors (μP)- Overview

- Programs are written for µP to work with real world data.
- Also, output of μP must be displayed at end effect instrument.
 - We need an input interfacing & processing circuits (converters & ports)

- µP based system to be efficiently used, it will need:
 - A set of memory units + Interfacing circuits for inputs and outputs.

- Put all together with μP called as microcomputer system (μCS).
 - The physical components of MCS are called Hardware.
 - The connections between hardware component called System Bus.
 - The program part that makes this hardware useful is called Software.

Thank you