CSec15233
Malicious Software Analysis

Review of 16-bit Assembly programming

0O and Visual Language

Java C++ Pascal

High-Level Language

Assembly Language

Machine Language

Qasem Abu Al-Haija

Why Assemble for Cybersecurity Experts?

Understanding assembly code is so important in Code interpretation.

Irrespective of the type of high-level language being used, it must first be translated into
assembly language before the code gets translated to machine code. This makes assembly
language still important despite the evolution of high-level languages.

Understanding assembly code is so important in Control Sustem Resources.

It helps in taking complete control over the system and its resources. By learning assembly
language, the programmer can write the code to access registers and retrieve the memory
address of pointers and values.

Understanding assembly code is so important in Malware analusis.

Assembly is an essential programming language as cybersecurity experts might use it to
interpret malware and understand their modes of attack. Cybersecurity professionals defend
against traditional and contemporary malware continuously, so it's essential to understand
how malware functions.

Understanding assembly code is so important in malware reverse engineering.

Knowledge of assembly language programming is a must in malware reverse engineering
becalts¥WaEtHAREY dEithors do not rMoFRaRGTHABHSN IR source code, and for that réason,
reverse engineering is done

Review of System Diagram

Central
Processing
Unit

system bus

Malware Analysis Dr. Qasem Abu Al-Haija

History Intel
Processors

Malware Analysis Dr. Qasem Abu Al-Haija

Early Intel Processors

+ 1971: 4004 (first 4-bit processor)

+ 1972: 8008 (first 8-bit processor)

+ 1974: 8080 (widely used by CP/M)

+ 1978: 8086/8088 (first 16-bit processor)

+ 1982: 80286: (introduced protected mode)
-+ 1985: 80386: (first 32-bit processor)

+ 1989: 80486: (integrated floating-point)

Malware Analysis Dr. Qasem Abu Al-Haija 5

Early Intel microprocessors

Intel 8080 (1972)

- 64K addressable RAM

- 8-bit registers

- CP/M operating system

- 5,6,8,10 MHz

- 29K transistors

Intel 8086/8088 (1978)— first real computer
- IBM-PC used 8088 |

- 1 MB addressable RAM l N -
- 16-bit registers &

- 16-bit data bus (8-bit for 8088) ;
- separate floating-point unit (8087)
- used in low-cost microcontrollers now

lllllllllll
||||||||||||
lllllllllll

lllllllllll

Malware Analysis Dr. Qasem Abu Al-Haija 6

The IBM-AT

Intel 80286 (1982)

- 16 MB addressable RAM

- Protected memory

- several times faster than 8086
- introduced IDE bus architecture
- 80287 floating point unit

- Up to 20MHz

- 134K transistors

IDE interface components

LAY TW

Malware Analysis Dr. Qasem Abu Al-Haija 7

Intel IA-32 Family

Intel386 (1985)
- 4GB addressable RAM
- 32-bit registers
- paging (virtual memory)
- Up to 33MHz
Intel486 (1989)
- instruction pipelining
- Integrated FPU
- 8K cache
Pentium (1993)

- Superscalar (two parallel pipelines)

Malware Analysis Dr. Qasem Abu Al-Haija

Intel P6 Family

Pentium Pro (1995)

- advanced optimization techniques in microcode
- More pipeline stages

- On-board L2 cache

Pentium Il (1997)

- MMX (multimedia) instruction set

- Up to 450MHz

Pentium Il (1999)

- SIMD (streaming extensions) instructions (SSE)
- Up to1+GHz

Pentium 4 (2000)

- NetBurst micro-architecture, tuned for multimedia
- 3.8+GHz

Pentium D (2005, Dual core)

Malware Analysis Dr. Qasem Abu Al-Haija

In this review class

We will focus on reviewing the Intel8086

Microprocessor

Malware Analysis Dr. Qasem Abu Al-Haija 10

For efficient use of any pP

- Understand the main feature.

+ Understand the internal HW architecture.

- Understand the instruction set architecture (ISA).

In this review, we are interested in
Intel 8086 pP

Malware Analysis Dr. Qasem Abu Al-Haija 11

Introduction to I8086 pp

In 1972, Intel launched the 8008, the first 8-bit microprocessor.

It needed several additional ICs to produce a functional computer.

In 1972, Intel launched 8080, employing the new 40-pin DIP.

Originally developed for calculator ICs to enable a separate address bus

In 1977, Intel launched 8085 with a single +5 V power supply chip.
Other well-known 8-bit pp: Motorola 6800, Zilog Z80, and others.

In 1978, Intel launched 8086 (iAPX 86) as the first 16-bit pp chip.
It gave rise to x86 architecture family: Intel's most successful line of pp.

Malware Analysis Dr. Qasem Abu Al-Haija

Intel 8086 pp

18086 pp Features

8086 is the first 16-bit pp released by Intel (1978).

40-pin DIPs, 16-bit data bus (DO-D15), and 20-bit address bus (AO-A19).
Higher execution speed - larger memory size (of previous pps).

Run at 2.5 MIPS = T,,, of one instruction = 400 ns (=1/MIPS=1/(2.5x109)).
Contains a small pre-fetch 6-byte instruction queue=>» Pipelining.

8086 pp is an example of a complex instruction set computer (CISC).

8086 pp is an example of a von Neumann Architecture (VNA) computer.

8086 clock input signal is generated by the 8284-clock generator chip.
Instruction execution times vary between 2 and 30 clock cycles.

Four versions: 8086 (5 MHz),8086- 1 (10 MHz),8086-2(8 MHz) &§ 8086-4 (4 MHz).

8086 has two modes of operation (Min mode and Max mode).

Malware Analysis Dr. Qasem Abu Al-Haija
14

18086 pp Features

« 8086 Memory Addressing.

- 8086 has 20 address pins = 220 bytes=1 MB of memory uniquely addressable.
- 8086 memory is Byte addressable: 00000,5; O00O01,; FFFFF 4.

- 8086 has 16 data pins=>» can read 8-bit or 16-bit word (2- con. byte) from memory

Low byte of the word High byte of the word
Address 02000, Address 02001,

* 8086 Registers Naming.

- 8086 register names followed by the letters X, H, or L (to specify 16 or 8-bit).
- Examples: MOV AX, [START] MOV AL, [START].

32-bit integer

« 8086 Endianness

OAOBOCOD Memory

— 8086 uses Little-endian byte order to

compute the physical address.

Malware Analysis Dr. Qasem Abu Al-Haija

= a:(0D

————————> a+1:|0C

> g+2:10B
> ag+3:|0A

Litde-endian

15

8086 Main Memory

8086 uses a segmented memory.

+Ve: Manipulates 16-bit components only and effectively used in time-shared systems.
Thus: 8086 Memory can be divided into 16 segments (1 MB =16 x 64 KB).

8086 segments may contain: codes or data or stack or extra.

Segments can be: Contiguous, Partially overlapped, Fully overlapped, or disjointed
Therefore, 8086 employs 16-bit registers to address segments such as: DS, CS.

By this, we will have two kind of addresses: Physical address and Logical address.

Physical address of pP (20 bit) =» Not used to access Memory.

Instead: Logical Address with two 16-bit components [Segment: Offset] is used.
8086 includes on-chip HW to translate between physical & logical addresses.

Shifting segment reqgister 4 times to left then addinq it to offset reqister.

Malware Analysis Dr. Qasem Abu Al-Haija 16

00000H

00020H
00122H

00080H

FFFFFH

17

8086 Main Memory

IF Ll
I
I
I
I
I
I
: cs
>= 0002H ﬁ 0000H ==~,
>= Offset 0102H :
| I
1
yi OOOSH% S(F)B%I;I'l :
. I
Zz\éilgjsl -i : User Memory
! S5 FFFFH =~ =
20-bit ! 0000H |
FromOto 1M | BES :
1 1
I
! |
! FFFFH =~
: Logical Addresses
| 16-bit addresses
L > 0 — 64K (FFFFH)

Dr. Qasem Abu Al-Haija Malware Analysis

Example: Physical Address Calculation

- Glven: CS =

O020H and IP = O121H

+ What is the Physical Address?

=>Add a zero to the right of the segment
register, then Add it to IP

CS =00200
IP = 0121
= 00321

Malware Analysis

-
-

-

Dr. Qasem Abu Al-Haija 18

8086 Hardware Architecture

* Enhanced internal architecture via Pipelining.

- Pipeliningis to allow the CPU to fetch and execute at the same time.

- This can be accomplished by having several units works simultaneously

* Thus, internal structure of 8086 is split into:

— Execution Unit (EU) — Bus Interface Unit (BIU)

Executes instructions already fetched Accesses memory and peripherals

non-pipelined 8085

fetch 1 | exec 1 | fetch 2 | exec 2

time
a >

pipelined 8086

fetch 1 | exec |

fetch 2 | exec 2

Malware Analysis 19

fetch 3 | exec 3

8086 Hardware Architecture

Execution Unit Bus Interface Unit

()
ES
BP ‘;%
DI EI)T‘;)
Sl I Inside the
5P

Address 8086
generation

and bus control
Operands I
Instruction
qucuc

Bus Interface Unit (BIU)
Reads (fetch) instructions,
reads operands and
writes results. 20

Flags

Dr. Qasem Abu Al-Haija

Execution Unit (EV)
EU executes instructions that
areValiveargyAfetlylsisd by BIU.
BIU and EU function separately.

8086 Registers

Central Processing Unit (or CPU)

AX i _
AH ae | -
- SS
BX 1F SP
BH BL
~-| BP
CX . SI
CH CL i =
DX DS
DH DL ES

Arithmetic & Logical Unit
{(or ALU)

15 0
EEmm | || || § u § |

Overlow
Direction
Interupt
Trace
Sign

Zero

Auxiliary Carry
Parity
Carry

Malware Analysis Dr. Qasem Abu Al-Haija 21

8086 Registers
* BIU Registers

— |IP: 16-bit Instruction Pointer (offset points to the current instruction).
— CS: 16-bit Code Segment Register (points to current code segment).
— DS: 16-bit Data Segment Register (points to current data segment).
— $S: 16-bit Stack Segment Register (points to current stack segment).

— ES: 16-bit Extra Segment Register (points to current extra segment).

» General Purpose Registers (GPRs)

— AX (Accumulator): used IN/OUT instructions, MUL, and DIV instructions.
— BX (Base): used for memory addressing and operands.
— CX (Counter): used mainly by SHIFT, ROTATE, and LOOP instructions.

— DX (Data): used mainly to hold a High 16-bit result after 16x16-bit MUL or
High 16-bit dividend before a 32+16 DIV (LOW 16-bit in AX)

 Pointer Registers (SP/BP).

— Stack Pointer & Base Pointer are used to access data in the stack segment.

— SP is to be used as an offset access STACK memory with $$ as segment register.
— SP is auto-incremented or decremented due to execution stack instructions.

— BP is used by the user in the based addressing mode (later).

Malware Analysis Dr. Qasem Abu Al-Haija 22

8086 Registers

* Index Registers (SI and DI).
— Source index and destination index are used with string Instructions
along with DS & ES, respectively.
» Flags Register (FL)
— FL bits are set or reset by EU to reflect the results of ALU.
— DF: Controlling string operations.

— IF: Controlling Maskable interrupts.
— TF : Provides Single-Step debugging.

UUUUOFDFIFTFSFZFUAFUPFUCFI
bl b B0 s ettt Conditional Flags
2. |PF |PARITY FLAG : .
(Compatible with 8085,
3. |AF | AUXILIARY CARRY
except OF)
a. |zF |zEROFLAG
5. |[SF |SIGN FLAG
6. |OF | OVERFLOW FLAG
7. |TF | TRAP FLAG Control Flags
8. |IF |INTERRUPT FLAG Those can be set or
Dr. Qasem Abu Al-Haija 9. |DF | DIRECTION FLAG cleared By Programmer

How can we practice using and
programming 80867

- We need to use a virtual machine (emulator
system for the 8086).

- EMUBO86.

+ 8086 is programmed using Assembly
language using its own predefined ISA

Malware Analysis Dr. Qasem Abu Al-Haija 24

Assembly Lanqguage

Symbolic |0 oosi0 | Array of bytes

representation | 7 7 — [] w—P> | 00101111 | to be loaded

of stream of bytes |-=----- 101100011 into memory

Source Binary
text file machine
language

« Abstracts bit-level representation of instructions and
addresses

« Main elements:
— Values
— Symbols
(symbols for addresses)
— Macros

Malware Analysis Dr. Qasem Abu Al-Haija 25

Program template in EMU8086

DATA SEGMENT
: DEFINE YOUR DATA HERE
ENDS
STACK SEGMENT : . .
DW 128 DUP(0) i keep it as is...stack contains 128
words of memory
ENDS
CODE SEGMENT
START:
MOV AX, DATA l - lude these three :
; always include these three lines... ge
mg¥ E; ’ ::((the address of data segment at
' runtime

: WRITE YOUR CODE HERE

MOV AX, 4COOH ;Two lines: exit to the operating
INT 21H system and terminate the program

ENDS
END START

Malware Analysis Dr. Qasem Abu Al-Haija

26

Directives and Instructions

Assembly language statements are either directives or instructions

Instructions are executable statements. They are translated by the

assembler into machine instructions. Ex:
» CALL MySub ;transfer of control

* MOV AX,5 ;data transfer

Directives tell the assembler how to generate machine code and allocate

storage. Ex:

COUNT DB 50 ;creates 1 byte of storage initialized to 50

Malware Analysis Dr. Qasem Abu Al-Haija 27

Malware Analysis

8086 Assembly
Directives

Dr. Qasem Abu Al-Haija

28

8086 Assembler Directives- Variable/Constant Definition

- DB, DW, DD, DQ, DT, directives.
Reserve Byte, Word, Double Word, Quad Word, Ten

Bytes in memory for storing variables.

*EQUor~=

The assembler does not allocate storage to a constant.

* DUP directive

Initialize Several Locations to an Initial Value.

Dr. Qasem Abu Al-Haija

29

* BYTE 8-BIT

« WORD 16-BIT
« DWORD 32-BIT
* FWORD 48-BIT
* QWORD 64-BIT

Example
« NUMS DB 20
« LISTDB1,2,8,9,5

Malware Analysis

8086 Assembler Directives- Variable/Constant Definition

Example

Comments

DATA1 DB 20H

Reserve one byte to store DATATI initialized to 20H.

ARRAY1 DB 10H,20H,30H

Reserve 3 bytes to store ARRAY1 initialized with 10H, 20H, 30H

CITY DB “DAMMAM”

Reserve a list named CITYT initialized with Chars’ ASCII codes.

DATA2 DW 1020H

Reserve one word to store DATA2 initialized to 1020H.

NUMBER EQU 50H

Assign the value 50H to NUMBER

NAME EQU “QASEM"

Assign the string “QASEM” to NAME

START DW 4 DUP (0)

Reseruves 4 words starting at offset START in DS initialized to O.

BEGIN DB 100 DUP (?)

Reserves 100 bytes of uninitialized data to offset BEGIN in DS.

X DW 2A05H
Y DW 052AH
PRODUCT EQU X*Y

Using Expressions

SUNDAY EQU 1
MONDAY EQU SUNDAY +1

Using Expressions

30

Dr. Qasem Abu Al-Haija Malware Analysis

Example (1): Variable Definition

VAL1 DB 10

VAL2 DB OAH

ARRAY1DB3,5,1,0

CHAR1DB “A” ; SINGLE QOUTEA ARE OK TOO
VAL3 DB ?

STR1 DB “Hello World”

Msgl DB “welcome”, OAh, ODH
VAL4 DW 90A1H, OFH

BIG DD 11223344H

LIST DB 2,0, 1 See the representation of
DB 10 data in memory - next
DB 1 slide

31 Dr. Qasem Abu Al-Haija Malware Analysis

32

Representing the data in memory

ADDRESSCONTENTS
(0] 10 [
1 OA |e=—
2 3 |
3 5
4 1
5 (0]

6 “pT [
7 | —
8 “H [
9 “E”
A “L”
B “L”

vaur C
varz D

ARRAYIE
F

10
"
CHARI1 {2
VAL3 43

STRI 14
15
16
17

0" 18
Sp L
o 1A
0" 1B
“R” 1C
L 1D
Y 1E
“\W\? €= MSGI 1F
“gn 20
L 21
“cr 22
“o” 23

Dr.

NM”‘

&“ E’l

OA

oD

Al

90

OF

00

44

33

22

1

Qasem Abu Al-Haija

G VALY

4 BIG

24
25
26
27
28
29
2A
2B

2D
2E
2F

G ||ST

ol|N

10

Malware Analysis

33

Example (2): Using DUP Operator (For Arrays)

* ARR1BYTE 20 DUP(0) ; 20 bytes, all equal to zero
« ARR2 DB 20 DUP (0O); SAME AS ABOVE
* LIST1 DB 20 DUP(?) ; 20 bytes, uninitialized

Dr. Qasem Abu Al-Haija Malware Analysis

Example (3): Working with constants

34

COUNT =5

mov al, COUNT; AL=5
COUNT =10

mov al, COUNT ; AL=10
COUNT =100

mov al, COUNT ; AL =100

Dr. Qasem Abu Al-Haija Malware Analysis

8086 Assembler Directives-Related to Code Location.

ORG (ORIGIN) Directive.
Tells the assembler where to load instructions and data into memory.
Initialize CS and IP with initial address (logical) as a starting address.

If its not mentioned at the start of segment=>» Offset is initialized to OOOOH.

Example: ORG O100H

The first instruction is stored from at offset O100H within the code segment.

OFFSET and SEG Directives.

Used to determine the Offset and Segment addresses of a given data item.

Example: MOV BX, OFFSETTABLE / MOV AX, SEG ARRAY1

EVEN Directive.

Used to declare a data item to start at even memory address.

Example: EVEN / ARRAY2 DW 20 DUP (0)

Dr. Qasem Abu Al-Haija

Malware Analysis

35

Using pointers to access memory

* You can use any of the pointers in the data segment to access your data
and arrays such as BX, SI, DI.

« Assume we have the following array:
Numsdb 2,1, 5, O, 1 ; array contains 5 elements

1. Use a pointer BX to point at the first address in the array:
Mov BX, offset nums or LEA BX, nums

2. Start a loop and access the contents of the array using [BX]:
Mov AL, [BX]

3. move the pointer to the next location using:
INC BX
4. repeat the loop until you finish all the 5 elements

36 Dr. Qasem Abu Al-Haija Malware Analysis

Example: Accessing the contents of an Array

.DATA
Numsdb 2,1,5, 0,1 ; array contains 5 elements
.CODE
MOV CX, 5 ; counter for the loop
MOV BX, OFFSET NUMS ; let BX points to first location in Nums
LOOP1 : MOV AL, [BX] ; access location in Nums pointed at by BX
INC BX ; let BX point to the next location in Nums
DEC CX ; subtract 1 from the counter
JNZ LOOP1 ; repeat the loop until CX=0

37 Dr. Qasem Abu Al-Haija Malware Analysis

Another Example: Access arrays without using offset

DATA In this example, we w'!ll
access the memory using
Numsdb 2,1,5, 0,1 ; array contains 5 elements ~ another method, Just like
Higher-level Languages, and
.CODE using any pointer (BX, DI, SI)
MOV CX, 5 ; counter for the loop
MOV BX, O ; initialize BX to Zero... It will be the index for the array
LOOP1 : MOV AL, Nums[BX] ; access location in nums pointed at by BX
INC BX ; let BX point to the next location in Nums
DEC CX ; subtract1from the counter
JNZ LOOP1 ; repeat the loop until CX=0

38 Dr. Qasem Abu Al-Haija Malware Analysis

8086 Assembler Directives- For Segment Declaration.

« SEGMENT and ENDS directives.

Indicate the Start & End of a logical segment (Segment name < 31 characters).

g R RE N « Example: Programmer must then use 8086 instructions
START SEGMENT to load START into DS, such as:
X1 DB FiH
X2 DB 50H MOV BX, START
X3 DB 25H MOV DS, BX
Segnam ENDS START ENDS

« ASSUME directive.

Links the logical segments with the declared segment names.

 Example1: CODE SEGMENT
ASSUME CS:CODE, DS:CODE, ES:CODE, SS:CODE
CODE ENDS

* Example 2: ASSUME CS : PROGRAM_1, DS : DATA_1, SS : STACK_1

39 Or. Qasem Abu Al-Haija Malware Analysis

8086 Assembler Directive- Procedures Declaration.

« PROC and ENDP directives.

Indicates the start and the end of a named procedure (NEAR or FAR).
* Examplel: SQUARE_ROOT PROC NEAR

SQUARE_ROOT ENDP
Define a procedure “SQUARE_ROOT”, which is to be called by a program located in the same

segment (Near).

« Example2: SQUARE_ROOT PROC FAR
SQUARE_ROOT ENDP

Define a procedure “SQUARE_ROOT”, which is to be called by a program located in another

segment (Far).

40 Dr. Qasem Abu Al-Haija Malware Analysis

8086 Assembler Directive- Macros Declaration.

* MACRO and ENDM directives.
Indicates the start and the end of a named MACRO (Can t_a_l_<e parameters).

 Example1: CALCULATE MACRO
MOV AX, [BX] Can be used any
ADD AX, [BX+2] . time in the main
MOV [SI], AX program, just use its
ENDM name
Example 2: CALCULATE .~ MACRO OPERAND, RESULT

Parameters OPERAND and RESULT can MOV BX, OFFSET OPERAND

MOV AX, [BX]
be replaced by OPERANDI1, RESULT1, and ADD AX, [BX+2]
OPERAND2, RESULT2 while calling the MOV SI, OFFSET RESULT
above macro as shown below: MOV [SI], AX

= ENDM
CALCULATE OPERANDI1, RESULT1
CALCULATE OPERAND2, RESULT2

41 Dr. Qasem Abu Al-Haija Malware Analysis

8086 Assembler Directives-Other Directives.

* PTR (Pointer) directive.
Used to declare the type of memory operand (prefixed by BYTE or WORD).

« Examples: INCBYTEPTR[SI] / INC WORD PTR [BX].
* NAME directive.

Used to assign a name to an assembly language program module.
+ Examples: NAME “Hi-World”

 TYPE directive.

Return the data type used to define a specific data (Word 2, Double 4, Byte 1).
* Example: MOV BX, TYPE DATAL.

* LENGTH Directive (or $ operator).

Used to determine the length of an array in bytes .
« Example: MOV CX, LENGTH ARRAY

» See other directives such as:
SHORT, LABEL, GROUP, EXTRN & PUBLIC, GLOBAL § LOCAL

42 Dr. Qasem Abu Al-Haija Malware Analysis

43

Example: Using $ operator to calculate the
size of arrays/lists

« Example (1)
—Listdb1,5,2,8,9,10, 3, 1
— List_size = ($ - list) ;335 list equals 8

« Example (2)

— myString "This is a long string, containing”
— myString_len = ($ - myString) ;;;; list equals 33

Dr. Qasem Abu Al-Haija Malware Analysis

44

Intel 8086 Assembly
Instructions

Dr. Qasem Abu Al-Haija Malware Analysis

Simple Instructions

* MOV
* INC
* DEC
 ADD
« SUB
« CMP
- JMP
* JNZ
 JZ

(Assignment)

(Add 1)

(Subtract1)

(Add two numbers)
(Subtract two numbers)
(Compare two numbers)
(Go to)

(Go to if results is not zero)
(Go to if results is zero)

Instructions Format

* Two Operand Instructions

General Form:
<Instruction> <Target Operand>, <Source Operand>

Examples

MOV AX, 5 s ASSIGN AX THE VALUE 5

MOV DX, AX ; ASSIGN DX WHATEVER VALUE IN AX
MOV NUMS, 2 s STORE 2 IN VARIABLE NUMS

ADD CX, 2 s ADD 2 TO THE VALUE OF CX

CMP AX, 5 ;s COMPARE THE VALUE OF AXWITH 5

SUB AX, BX s AX=AX -BX

One operand instructions

e General form:

<Instruction> <Destination>
Destination: reg., variable

Examples

INC AX s AX=AX +1

INC NUMS s NUMS = NUMS +1
DEC BX ; BX=BX-1

JMP LABELI1 s GO TO LABEL1

JNZ LABELI1 s DON’T JUMP IF RESULTS IS
ZERO

JZ LABEL1 s JUMP IF REULTS IS ZERO

General Assembly Language Rules
1. Operands must be equal size at all times
— Mov Opl (8-bit), Op2 (8-bit) Ok

— Mou Op1 (16-bit), Op2 (16-bit) OK

— Mov Op1 (16-bit), Op2 (8-bit) Wrong....
Wrong

48 Dr. Qasem Abu Al-Haija Malware Analysis

General Assembly Language Rules

An instruction can not refer or use two
memory locations. The two operands can
not be memory locations. Its ok touse a
memory location with a register or a
constant

Mov numi, num2 Wrong

MOV AX, NUMI OK
MOV NUM2, AX OK

Mov numli, [BX] Wrong
Mov numi, 10 OK

General Assembly Language Rules

* The destination of any instruction
should not be a constant

50 Dr. Qasem Abu Al-Haija Malware Analysis

General Assembly Language Rules

* One of the operands of any instruction
should specify the size (8 or 16 bit) of the
instruction

— Inc [BX]........... Wrong

— Inc Byte PTR [BX].....OK

— Add Word PTR [BX], 100K
— Mov [BX], AL...... OK

* Note: [BX] mayrefer to an 8-bit or 16-bit location. It does not really specify
the size

51 Dr. Qasem Abu Al-Haija Malware Analysis

Data Transfer Instructions

 Examples of MOV instruction.

— MOVCX, DX ; Copies 16-bit contents of DX into CX
— MOVAX, 2025H ; Moves immediate data 2025 to AX register
— MOVCH, [BX] ; BX=0050H, DS = 2000H, Mem Loc (20050) =08

; 8-bit contents of memory location DS+BX will be
transferred to CH register, memory location is 20000 +
00050 = (20050)H =» CH will contain O8H

— MOV START [BP], CX s CX=5009H, BP =0030H, SS =3000H, START = O6H

i16-bit contents of register CX will be stored in memory
location SS+START+BP = 30000 + 00030 + 06 =(30036)H
= 09H(CL) and memory location (30037) = 50H (CH).

* XCHG instruction.
— Exchanges the register contents with the contents of memory location.
— It cannot exchange directly the contents of two memory locations.
— The source and destination must both be words or must both be bytes.
— The segment registers cannot be used in this instruction.

+ Examples : XCHG AL, BL / XCHGCX,BX / XCHG AL, [BX].
52 Dr. Qasem Abu Al-Haija Malware Analysis

Data Transfer Instructions

LEA instruction (Load Effective Address)

Determines the offset address of a variable or memory location named as the

source and puts this offset address in the indicated 16-bit register.

The general format of LEA instruction is: LEA register, source.

Examples:

LEA BX, COST ; BX= Offset address of COST in data segment where COST is
; the name assigned to a memory location in data segment.

LEA CX, [BX][SI] ; CX=(BX)+(SI) (content of BX and Sl respectively).

LDS instruction (Load register and DS with words from memory)

Copies a word from memory location specified in the instruction into register

and then copies a word from the next memory location into the DS register.

LDS is useful for initializing SI and DS registers at the start of a string before

using one of the String instructions.

Examples:

LDS SI,[2000H] ; Copy the contents of memory word at offset address 2000H in
; data segment to Sl register and the contents of memory word
; at offset address 2002H in data segment to DS register.

LES, LSS instructions
Similar to LDS instruction except that instead of DS register, ES and SS registers
are loaded respectively along with the register specified in the instruction.

Dr. Qasem Abu Al-Haija Malware Analysis

Data Transfer Instructions

e PUSH instruction.

— Used to store a word from a register or a memory location into stack.

—SP is decremented by 2 after execution of PUSH.

— Example: PUSH CX, PUSH DS

* POP instruction.
— Copies the top word from stack into a destination specified in the instruction.
— The destination can be a GPR, a segment register or a memory location.
— SPis incremented by 2 after execution of POP to point to the next word in stack.

« Examples: POPCX /7 POPDS /7 POP[SI].

Example: if BX, DX, and Sl are PUSHed: Then: they must be POPped using:
PUSH BX POP S1
PUSH DX POP DX
PUSH SI POP BX

Dr. Qasem Abu Al-Haija Malware Analysis

54

DS =2000H, BX = 0200H, SP =3000H, SS = 4000H, (20200) = O120H

Data Transfer Instructions
Example of PUSH instruction: PUSH [BX], Assume that:

BEFORE AFTER
Memory Memory | 2020
SP (3000 20200 |20 SP 2FFE 20
locations locations | O
DS [2000 20201 | O DS 2000 20201 | O1
SS [4000 SS 4000
Memory Memory
BX [0200 42FFE | xx BX 0200 42FFE | 20
locations locations
42FFF | xx 42FFF | O1

55

Dr. Qasem Abu Al-Haija

Malware Analysis

Arithmetic Instructions

Addition
ADDa,b Add byte or word
ADCa,b Add byte or word with carry
INC reg/mem Increment byte or word by one

Destination | Source
Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate
Accumulator| Immediate

Destination

Reg 16
Reg 8
Memory

(a)

(b)

(a) Allowed operands for ADD and ADC
(b) Allowed operands for INC

The AF, CF, OF, PF, SF and ZF flags are affected by the execution of ADD/SUB instruction

Subtraction

Destination | Source

SUBa, b
SBRa,b
DEC reg/mem

Subtract byte or word
Subtract byte or word with borrow

Decrement byte or word by one

Register Reugister
Register Memory
Memory Reqgister
Accumulator| Immediate
Register Immediate
Memory Immediate

Destination

Heg1é
Reg &8
Memory

(b)

(c)

Destinatlion

Register
Memory

(@)

(b) Allowed operands for SUB and SBB instructions
(c) Allowed operands for DEC instruction
(d) Allowed operands for NEG instruction

a= “reg” or “mem,” b = “reg” or “mem” or “data.” ‘

NEG reg/mem Negate byte or word
CMPa, b Compare byte or word
56

Malware Analysis

Dr. Qasem Abu Al-Haija

Arithmetic Instructions

Multiplication
MUL reg/mem Multiply byte or word unsigned for byte
IMUL reg/mem Integer multiply byte or word [AX] < [AL] - [mem/reg])
(signed) for word
Source = [DX]{AX] < [AX] - [mem/
— Mem8/Mem16/Reg8/Reg16 regl
Division
DIV reg/mem Divide byte or word unsigned [AX]

16 = 8 bit; [AX] «
[AH] « remainder
[AL] « quotient

IDIV reg/mem Intcger divide byte or word (SIgned) [mem/reg]

: [DX:AX]
32+16 bit; [DX:AX] {renvreg]
Source = [DX] < remainder
Mem8/Mem16/Reg8/Req16 [AX] <~ quotient

—NOTE: if you are accessing memory with a single operand operation such
as MUL, DIV, INC..., then you will have to specify the type of data (byte or
word) ==>Two assembler directives are used for this purpose:

BYTE PTR & WORD PTR

o7 Dr. Qasem Abu Al-Haija Malware Analysis

Arithmetic Instructions

« Examples:

— ADDBL, 80H ; Addimmediate data 80H to BL

— ADD CX, 12BOH ; Add immediate data 12BOH to CX

— ADD AX, CX ; Add content of AX and CX and store result in AX

— ADD AL, [BX] ;AddAL to the byte from memory at [BX] and store result in AL.

— ADD CX, [SI] ; Add CX and the word from memory at [SI] and store result in CX.
— ADD [BX], DL ; Add DL with the byte from Mem at [BX] & store result in Mem at [BX].
— SUB AL, BL ; Subtract BL from AL and store result in AL

— SUB CX, BX ; Subtract BX from CX and store result in CX

— SUB BX, [DI] ; Subtract the word in memory at [DI] from BX and store result in BX

— SUB [BP], DL ;Subtract DL from the byte in Mem at [BP] & store resultin Mem at [BP].
— INCCL ; Increment content of CL by 1

— INC AX ; Increment content of AX by 1
— INC BYTE PTR [BX] ;Increment byte in memory at [BX] by 1
— INC WORD PTR [SI] ; Increment word in memory at [SI] by 1

58 Dr. Qasem Abu Al-Haija Malware Analysis

Arithmetic Instructions

« Examples:

— MUL CH ; Multiply AL and CH and store result in AX

— MUL BX ; Multiply AX and BX and store result in DX-AX

— MUL BYTE PTR [BX] ; Multiply AL with byte in memory at [BX] & store result in AX
— IMUL BL ; Multiply AL with BL and store result in AX

— IMUL AX ; Multiply AX and AX and store result in DX-AX

— IMUL BYTE PTR [BX] : Multiply AL with byte from memory at [BX] & store resultin AX
— IMUL WORD PTR [SI]; Multiply AX with word from memory at [SI] & store result in DX-AX

— DIV DL ; Divide word in AX by byte in DL.
; Quotient is stored in AL and remainder is stored in AH
— DIV CX ; Divide double word (32 bits) in DX-AX by word in CX.

; Quotient is stored in AX and remainder is stored in DX

— DIV BYTE PTR [BX] ; Divide word in AX by byte from memory at [BX].
; Quotient is stored in AL and remainder is stored in AH.

59 Dr. Qasem Abu Al-Haija Malware Analysis

Arithmetic Instructions

EX: if (AX) = 0005, § (CL) = 02, @ DIV CL-> (AH) = O1, (Rem) & (AL) = 02, (Quot).

EX: If (CX) =2 and (DX AX) = -5,, = FFFFFFFB,; DX AX
IDIV, after this IDIV, DX and AX will contain:

FFFF FFFE
16-bit 16-bit
remainder = quotient =
_1 10 _2'IO

EX: If (AL)=20,, & (BL) = 02, = MUL BL. =& AX will contain 0040,

EX: If (CL)=FDH =-3,, & (AL) =FEH =-2,, 2*IMUL CL = AX contains OOOG6H.

EX : If (AL) = FF,,= -1,, and (DH) = 02,, & IMUL DH=->AX = FFFE,, (-2,,).

Example: MOV
MOV
MOV
MOV
MOV
MUL

BX, 0050H
CX, 3000H

DS, CX
[BX],0006H
AX, 0002H
WORD PTR [BX]

reqizters

A,
B
-
o=
==
=

b=
SF
BEF
= |

(]|

0=
ES

o [oc
oo [so
|—'§§ l—lzz Remember, signed
Faoo numbers:
CECE

ot | if 8bit(-128t0127)
[oooo
12000 if 16 bit (-32768 to
|3|j|j|:| 32767)

II:IT"I:II:I

Arithmetic Instructions

EX: ADC AX, [BX]

Before

AX 0020 Memory locations

DS 2020 20500
BX 0300 20501
CF 1

s 0020+0100+1 = 0121

AX
00 DS
o1 BX
CF

EX: SBBCH,DL ;03-02-1=0

Before
CH 03
DL 02
CF 1

EX: CMP DH, BL.

Before Execution:

Assume:
(DH) = 40H
(BL) = 30H

61

Dr. Qasem Abu Al-Haija

0121

2020
0200

CH
DL
CF

After

Memory locations

20500 00
2050t o]
PF=0,AF=0,ZF=0,SF=0,0F=0

After

02
1 PF=1,AF=1,ZF=1,SF=0,0F =0

After Execution:

Result 10H is not provided
Flags are: CF= 0O, PF=0,
AF=0, ZF=0, SF=0, § OF=0

Malware Analysis

Arithmetic Instructions

NEG (2’S COMPLEMENT)

NEG DESTINATION
DESTINATION REG., MEMORY (8-BIT OR 16-BIT)
EXAMPLE:

M :
oV Sk > (00000101
NEG B {—

Flags affected: ZF, OF, SF, CF -5 [11111011 |

62 Dr. Qasem Abu Al-Haija Malware Analysis

Arithmetic Instructions

« CBW: Convert byte to word (No Operand)
if high bit of AL =1then: AH =255 (OFFh)
Else, AH=0

Example:
MOVAX,O 3AH=0,AL=0 ClZ/SI O P
MOV AL, -5 ; AX=000FBh (251)
CcBW ;s AX=0FFFBh (-5) unchanged
RET
« CWD: Convert word to double word (No Operand)
if high bit of AX=1then: DX =65535 (OFFFFh)
Else, DX=0
Example: cClz s o p
MOV DX,0 ;DX=0
MOV AX,0 ; AX=0 unchanged

MOV AX, -5 ; DXAX=00000h:0OFFFBh
CwWD ; DX AX = OFFFFh:OFFFBh

RET y
Dr. Qasem Abu Al-Haija

Summary of Arithmetic Instructions

Flag affected

Instruction Z-flag C-flag S-flag O-flag A-flag
ADD Yes Yes Yes Yes Yes
ADC Yes Yes Yes Yes Yes
SUB Yes Yes Yes Yes Yes
SBB Yes Yes Yes Yes Yes
INC Yes No Yes Yes Yes
DEC Yes No Yes Yes Yes
NEG Yes Yes Yes Yes Yes
CMP Yes Yes Yes Yes Yes
MUL No Yes No Yes No
IMUL No Yes No Yes No
DIV No No No No No
IDIV No No No No No
CBW No No No No No
CWD No No No No No

64

Dr. Qasem Abu Al-Haija

Malware Analysis

Example: 8086 Assembly Programming Using MASM

Write a program to add two 8-bit data (FOH and 50H) in 8086
and store results in memory.

DATA SEGMENT ; Beginning of data segment
OPER1 DB FOH ; First operand
OPER2 DB 50H ; Second operand
RESULT DB O1 DUP (?) ; A byte of memory is reserved for result
CARRY DB O1 DUP (?) ; A byte is reserved for storing carry
DATA ENDS ; End of data segment
CODE SEGMENT ; Beginning of code dement
START: MOV AX, DATA s Initialize AX with the segment address of DS
MOV DS, AX i Mouve AX content to DS
MOV BX, OFFSET OPER1 ; Moue the offset address of OPERI1 to BX
MOV AL, [BX] ; Moue first operand to AL
ADD AL, [BX+1] ; Add second operand to AL
MOV S|, OFFSET RESULT ; Store offset address of RESULT in SI

Pr-Qasem-Abu-At-Haija
65 Malware Analysis

Example: 8086 Assembly Programming Using MASM

MOV [SI], AL ; Store content of AL in the location RESULT
INC SI ; Increment Sl to point location of carry
JC CAR ; If carry =1, go to the place CAR
MOV [SI], OOH ; Store OOH in the location CARRY
JMP LOCI ; go to the place LOC1
CAR: MOV [SI], OIH ; Store O1H in the location CARRY
LOC1: MOV AH, 4CH
INT 2IH ; Return to DOS prompt
CODE ENDS ; End of code segment
END START ; Program ends

66

Dr. Qasem Abu Al-Haija Malware Analysis

logical Instructions

* AND : Turns off specific bits (used with masking).
TEST : Same as AND, does not change destination.
*OR : Turns on specific bits .

*NOT : Complement all the bits .

* XOR : Complement specific bits .

* SHR : Shift Right

* SAR : Shift Arithmetic Right

* SHL : Shift Left

* SAL : Shift Arithmetic Left

*ROL : Rotate Left

*ROR : Rotate Right

*RCL : Rotate Carry Left

*RCR : Rotate Carry Right

Malware Analysis Dr. Qasem Abu Al-Haija 67

logical Instructions

Logicals
NOT mem/reg NOT byte or word ——> One’s complement
ANDa, b AND byte or word
ORa,b OR byte or word
XOR a, b Exclusive OR byte or word
TESTa, b Test byte or word

Shifis

SHL/SAL mem/reg, CNT
SHR/SAR mem/reg, CNT

Shift logical/arithmetic left byte or word
Shift logical/arithmetic right byte or word

Rotates
ROL mem/reg, CN'T Rotate left byte or word
ROR mem/reg, CNT Rotate right byte or word

a=-reg or 'mem, D= reg of cmem” or “data,” CNT = number of fimes to be smited.
It CNT > 1, then CNT is contained in CL. Zero or negative shifts and rotates are illegal.

If CNT = 1 then CNT is immediate data. Up to 255 shifts are allowed.

68

Dr. Qasem Abu Al-Haija Malware Analysis

logical Instructions

EX: TEST CL, O5H
Logically ANDs (CL) with 0O0000101. Does not store the result in CL, All flags are
affected.

EX: Let AL=0111 1111 =7FH,
TEST AL, 80H; AL=7FH (unchanged), ZF=1since (AL) AND (80H)=00H; SF=0; PF=1

EX: MOV CL,2 ; Shift count 2 is moved into CL
SHR DX,CL; Logically shifts (DX) twice to right
SAR SAL
15 o0r7 O 1 nr? e
cH{TT.T] [c8 L#—ﬂ
WA
8086 SAR and SAT instructions
ROL
1 S5or7? 1 O 150:"]'

R LU \fﬂ <«

8086 ROR and ROL instructions

69 Dr. Qasem Abu Al-Haija Malware Analysis

Unconditional Transfer Instructions

* Used to transfer control to: Intra-segment or Inter-segment.

CALL reg/mem/disp 16 Call subroutine
RET or RET disp 16 Return from subroutine
JMP disp8/disp 16 /regl6/mem16 Unconditional jump

* CALL Instruction.
—Intra-segment CALL: IP changes, CS is fixed, EX: CALL NEAR PROC.
—Inter-segment CALL: Both IP & CS are changed, EX: CALL FAR PROC.

* RET instruction.
—Placed at the end of the subroutine to transfer control back to the main program.

* JMP Instruction.
—Intra-segment JMP: IP changes, CS is fixed, EX: JMP START.
—Inter-segment JMP: Both IP & CS are changed, EX: JMP FAR BEGIN.

70 Dr. Qasem Abu Al-Haija Malware Analysis

Unconditional Transfer Instructions

CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:STACK

____________ Example of: Intra-segment CALL

A ———— —— —— —— —

HLT
MULTI PROC NEAR
RET
MULTI ENDP
CODE ENDS
ORG 100h
.CODE
MOV AX,2
MOV BX,2 Example of: JMP destination_label

JMP LABEL_SUB
ADD AX,BX :this instruction will never execute
LABEL SUB:

SUB AX, BX

RET Dr. Qasem Abu Al-Haija Malware Analysis

Unconditional Transfer Instructions

Example of: Inter-segment CALL

CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:STACK

—— — —— i — — — e —

e — —— T f— i ——

—— e —————— —— —

HLT

CODE ENDS

SUBR SEGMENT

MULTI PROC FAR
ASSUME CS:SUBR
RET

MULTI ENDP

SUBR ENDS

Dr. Qasem Abu Al-Haija Malware Analysis

Conditional Branch Instructions

Jumps for Unsigned Numbers

Instructions Meaning Condition

JA Jump if above > CF=0andZF=0
JINA

JAE Jump if above or equal > CF=0
JINAE

JB Jump if below < CF=1
JNB

JBE Jump if below or equal < CF=1lorZF=1
JNBE

IC Jump in carry CF=1
INC

73 Dr. Qasem Abu Al-Haija Malware Analysis

Conditional Branch Instructions

Example:
Instructions UNSIGNED FLAGS SATISFIED JUMP
MOV AL, 10 -
MOV BL, 5 -
CMP AL, BL ZF=0. CF=0 JA, JAE, JNB, INC, JNZ
CMP BL, AL /F=0.CF=1 1B, JC, JNA

74 Dr. Qasem Abu Al-Haija Malware Analysis

Conditional Branch Instructions

Jumps for Signed Numbers

Instructions

JG
JGE
JL
JLE
IS
JNS
JO
JNO

75

Meaning
Jump if greater

Jump if greater or equal

Jump if less
Jump if less or equal
Jump on signe flag
Jump on not signe flag
Jump on over flow

Jump on not over flow

Dr. Qasem Abu Al-Haija

Condition
ZF = 0 and SF = OF
SF=0OF
SF<>OF
ZF=1 OR SF<>O0F
SF=1
SF=0
OF=1
OF=0

Malware Analysis

8086 Instruction Set

Group 5: Conditional Branch Instructions

Example: MOV AX, 1000H
MOV DS, AX ;Initialize DS
MOV BX, 2000H
MOV CX, 3000H
AGAIN: MOV WORD PTR[BX], 0OQOH
INC BX
INC BX
CMECX, BXIGE treats CMP operands as twos complement mumbers.
JGE AGAIN |
Example: || _.
okl mov ax, 2 ; ax=2
if (ax 1= bx) sub ax, bx; ax = 2 - bx
{ > | jz nextl ; jump if (ax-bx) ==0
ax=ax+1; incax:ax=ax+1
} nextl:
bx=bx+1; R g

76

Dr. Qasem Abu Al-Haija

Malware Analysis

Iteration Control Instructions

All these instructions have relative addressing modes.

8086 Iteration Control Instructions

LOOP disp8 Decrement CX by 1 without affecting flags and branch to label if
CX = 0; otherwise, go to the next instruction.

LOCPE/LOOPZ disp8 Decrement CX by 1 without affecting flags and branch to label
if CX = 0andZF = |; otherwise {CX=0 or ZF=0), go to the next
instruction. .

LOOPNE/LOOPNZ disp® Decrement CX by 1 without affecting flags and branch to label if
CX # 0 and ZF = 0; otherwise (CX=0 or ZF=1), go to the next

instruction.
JCX7Z disp8 IMP if register CX =0.
Example:
DEC 51
MOV CX,50 ; Initialize CX with array count
BACK: INC ST ; Update pointer

CMP BYTE PTR[SI],00H ; Compare array element with 00H
LOOPE BACK

77 Dr. Qasem Abu Al-Haija Malware Analysis

String Instructions

String is an array of data bytes/words, stored in a consecutive memory Locations.

MNEMONICS FUNCTION

MOVSB
MOVSW

CMPSB

CMPSW

LODSB
LODSW
STOSB
STOSW

SCASB

SCASW

REP

REPE or REPZ
REPNE or REPNZ
78

Move string byte from DS:[SI] to ES:[DI]

Move string word from DS:[SI] to ES:[DI]

Compare string byte (Done by subtracting byte at ES:[DI] from the byte at DS:[Sl]). Only flags are
affected and the content of bytes compared is unaffected.

Compare string word (Done by subtracting word at ES:[DI] from the word at DS:[Sl]). Only flags are
affected and the content of words compared is unaffected.

Load string byte at DS:[Sl] into AL
Load string word at DS:[SI] into AX
Store string byte in AL at ES:[DI]

Store string word in AX at ES:[DI]

Compare string byte (Done by subtracting byte at ES:[DI] from the byte at AL). Only flags are
affected and the content of bytes compared is unaffected.
Compare string word (Done by subtracting word at ES:[DI] from the byte at AX). Only flags are
affected and the content of words compared is unaffected.

Decrement CX and Repeat the following string operation if CX # 0.

Decrement CX and Repeat the following string operation if CX # 0 and ZF=1.
Decrement CX and Repeat the following string operation if CX # 0 and ZF=0.

Dr. Qasem Abu Al-Haija Malware Analysis

8086 Instruction Set

Group 7 : String Instructions

EX: MOVS WORD.

Assume that:

(DF)=0 (DS)=1000, (51)=0002, (ES)=3000,

(DI)= 0004, (10002)=1234,, (30021)= 0516

Then, after this MOVS:

(30004)=1234,,, (S1)=0004,, (DI)=0006

Assuming (10002,,) =1234,,= 8086 Insts to accomplish this???

79 Dr. Qasem Abu Al-Haija Malware Analysis

80

CLD
MOV
MOV
MOV
MOV
MOV
MOV
MOVSW

8086 Instruction Set

Group 7 : String Instructions

AX, 1000H
DS, AX
BX, 3000H
ES, BX

S|, 0002H
DI, 0004H

;DF = 0
;DS = 1000,
;ES = 3000,,

;Initialize SIto 0002,
;Initialize DI to 0004,

Dr. Qasem Abu Al-Haija Malware Analysis

8086 Instruction Set

Group 7 : String Instructions
EX: if (DF) =0, (DS) = 1000, (ES) = 3000,,, (SI)= 0002,
(DI)= 0004,,, (10002) =1234,,, (30004) = 1234,
Then, after CMPS WORD:

(10002) = 1234, (30004) = 1234, (SI) = 0004, (DI) = 0006,
Flags: CF =0, PF=1, AF=1, 2ZF=1, SF=0, OF=0

EX:if : (DI)= 0000,,, (ES)= 2000,;, (DF)= 0, (20000)= 05,, (AL)=03,,
Then, after SCASB:

DI will contain 0001, because (DF) = 0.
All flags are affected based on the operation (AL) - (20000).

81 Dr. Qasem Abu Al-Haija Malware Analysis

Emulator Example

data segment
STR1db1,2,3,45
STR2db6,0,7,8,9
pkey db "press any key...S"

ends

stack segment

dw 128 dup(0)
ends

82 Dr. Qasem Abu Al-Haija Malware Analysis

code segment
start: ; set segment registers:
mov ax, data
mov ds, ax
mov si, offset STR2
cld

mov cx, 5
rep movsb

lea dx, pkey
mov ah, 9
int 21h ; output string at ds:dx

; wait for any key....

mov ah, 1

int 21h

mov ax, 4c00h ; exit to operating system.
int 21h

ends

end start ; set entry point and stop the assembler.

Dr. Qasem Abu Al-Haija

Malware Analysis

83

Flags manipulation Instructions

* These instructions are ZERO operand instructions.(Implied addressing Modes)
* Can be executed any where in the code.

Mnemonics ____|Function

LAHF
SAHF
PUSHF
POPF
CMC
CLC
STC
CLD
STD
CLI
STI

84

Load low byte of flag register into AH
Store AH into the low byte of flag register
Push flag register’s content into stack
Pop top word of stack into flag register
Complement carry flag (CF = complement of CF)
Clear carry flag (CF=0)

Set carry flag (CF=1)

Clear direction flag (DF= 0)

Set direction flag (DF= 1)

Clear interrupt flag (IF= 0)

Set interrupt flag (IF=1)

Dr. Qasem Abu Al-Haija Malware Analysis

Input / Output Using DOS Interrupt 21H

SERVICE DESCRIPTION EXAMPLE

1 Read one character from the MOV AH,1
keyboard INT 21H
AL= ASCI CHARCTER

2 Display a character
MOV AH, 2
MOV DL, 35h
Int 21H

9 Display a String
STR DB “Hello$”

MOV AH,9

MOV DX,OFFSET STR
INT 21H

OAH Reading String inputarea db 10,0,10 dup('"')
mov dx,offset inputarea

movu ah,0A
int 21h

85 Dr. Qasem Abu Al-Haija Malware Analysis

86

Character

The ASCII table

48

49
50
51
52
53
54
55
56
57

30
31
32
33
34
35
36
37
38
39

oy | oua

110000
110001
110010
110011
110100
110101
110110
110111
111000
111001

Dr. Qasem Abu Al-Haija

60
61
62
63
64
65
66
67
70
71

Malware Analysis

o
~

__Character | Decimal
A 65 41 1000001 101
B 66 42 1000010 102
67 43 1000011 103
. b | 68 44 1000100 104
. B 69 45 1000101 105
. F 70 46 1000110 106
. ¢ | 71 47 1000111 107
- H] 72 48 1001000 110
I 73 49 1001001 111
-y 74 4A 1001010 112
. k| 75 48 1001011 113
L 76 ac 1001100 114
- m] 77 4D 1001101 115
. N 78 4E 1001110 116
. o | 79 4F 1001111 117
- r 80 50 1010000 120
. a | 81 51 1010001 121
. R 82 52 1010010 122
s 83 53 1010011 123
84 54 1010100 124
U] 85 55 1010101 125
86 56 1010110 126
. w 87 57 1010111 127
x| 88 58 1011000 130
89 59 1011001 131
-z 90 5A 1011010 132

Dr. Qasem Abu Al-Haija Malware Analysis

Character

0 o]
co

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A

Dr. Qasem Abu Al-Haija

1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010

Binary | __Octal ___

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172

Malware Analysis

8086 STACK

Consists of 16-bit locations
SP points at the top of the stack

PUSH instruction is used add data to
the top of the stack

POP instruction is used to remove
items from the top of the stack

STACK is a LIFO structure

SP is decremented with every PUSH
SP is incremented with every POP
Procedures use the stack

The CALL instruction adds the return
address on the top of the stack

The RET instructions removes the
address from the top of the stack

Every PUSH Instruction must be
associated with a matching POP

Every CALL must also be associated
with a matching RET

Must be careful when using PUSH, POP,

CALL, and RET
89

Code Seg.

CS

Data Seg.
DS

Stack Seg.
SS

Extra Seg.

ES

Dr. Qasem Abu Al-Haija

SP““‘—'—-—-—*

Malware Analysis

POP

90

Using the STACK

Useful for storing and retrieving data (16-bit)
Useful for implementing the concept of local variables
Can be used to reverse the order of stored data

Useful for problems requiring backtracking

Dr. Qasem Abu Al-Haija Malware Analysis

MOV
MOV
MOV
PUSH
PUSH
PUSH
DEC
ADD
MOV
POP
POP
POP

91

AX,5

BX,10 AX BX
CX,2 5 10
AX

BX 4 12
CX 5 10
AX

BX,2

CX, BX

CX

CX

12

STACK

A
16

e

BX Note: the POPs are in reverse order of the PUSHs

AX

Dr. Qasem Abu Al-Haija

Malware Analysis

STACK

MOV AX,5

MOV BX,10 AX BX CX

PUSH AX

PUSH BX 4 12 12 ,10/
PUSH CX 2 10 5 /5/
DEC AX

ADD BX,2 Note: register values are reversed
MOV CX, BX '

POP AX

POP BX Note: the POPs are in same order of the PUSHs
POP CX

Dr. Qasem Abu Al-Haija Malware Analysis

EXAMPLE: USING CALL, RET, PUSH AND POP

.DATA
MPROC1 DB “IN PROCEDURE 17,0DH,0AH,”$” PROC2 :
MPROC?2 DB “IN PROCEDURE 2”,0DH,0AH,”$” MOV AH,9
MPROC3 DB “IN PROCEDURE 3”,0DH,0AH,”$” LEA DX, MPROC2
CODE INT 21H
MOV AX,5 RET
PUSH AX
CALL PROCI
CALL PROC2 PROC3 :
MOV AH,4CH MOV AH,9
INT 21H LEA DX, MPROC3
PROCT INT 21H
MOV AH,9 Ei?)T
LEA DX, MPPOC1
INT 21H
MOV AX,2
REMEMBER PUSH AX
POP AX
CALL PROC3
RET

93 Dr. Qasem Abu Al-Haija Malware Analysis

Please Practice more examples
using EMU 8086

94 Dr. Qasem Abu Al-Haija Malware Analysis

