CY 411 Reverse Software Engineering

Overview Reverse Engineering

Dr. Qasem Abu Al-Haija

Department of Cybersecurity
Faculty of Computer & Information Technology

Jordan University of Science and Technology

1 Dr. Qasem Abu Al-Haija Reverse Engineering

Reverse Engineering

Process of analyzing a subject system to create representations

of the system at a higher level of abstraction”
“Going backward through the development cycle.”
Discovering how a device usually works by taking it apart.

Generally considered lawful if the system was obtained

legitimately.

REing Mechanical Devices

« Not what you may think.

 Actually the reverse of the
engineering process, going from
a finished product to design.

. Used to “digitize” old parts and
systems.

Antikythera mechanism

. A famous example of
reverse engineering

« Ancient mechanical
computer

o Discovered in a wreck
in 1900, dated around
150-100 BC

Development Cycle

« The waterfall model

Requirements

J

« Reverse
Engineering moves)
through this
process in reverse.

w
o o
=

« May not end up S

with the same
implementation.

Software Techniques

. Analysis through observation of information
exchange

« Disassembly

« Decompilation

Analysis Through Observation

Very common for protocol reverse engineering.

Usually use a bus analyzer and or packet sniffers.

Can be assisted through the use of low-level debuggers

Example of tools: SoftICE, WireShark, ...

@

/1
WIRESHARK
=

File storage

S3

Private
network

HDFS
SAN

(‘\J Kibana

it

v

B) Filebeat

(==) Flasticsearch
>/

{

frame: 14,

ip: 52.38.239.5,
tcp.port: 80,
host: "elastic.co"

}

Disassembly

Most programs, when compiled, are turned into
architecture-specific machine code.

Disassemblers take the binary executable and display its
assembly code.

Need a good understanding of assembly and usually a hex
editor.

Example of tools: W32Dasm, IDA Pro, ...

asm

(Executable Binary) (Disassembler) (Assembly Code)

Decompilation

. A decompiler is a computer program that translates an
executable file to a high-level source file that can be

recompiled successfully.

. Itis the opposite of a typical compiler, which translates a

high-level language to a low-level language.

D il
Source code ecompiled code

« Example of tools: ot footint e int foo(int arg)
int i = 0; ’

for(; 1 < a ; i++){ while(var < arg){

Mocha, JAD,... y var = var + 1;

L} ’ }

\ b
Compilation Decompilation
Hiohlevel © 010101010101010101001010 |
igh-leve .
5 X 010110101010010101001010 Recovered abstractions
abstractions are lost 101010100110110011011000

101101011001011001011010

_100001010101010001001100

Binary code

Motivati .

Reverse Engineering

Motivation of RE

Interoperability

Lost documentation

Product analysis

Security auditing

Removal of access restrictions

Creation of duplicates

Fraud

Interoperability

» Getting a device/piece of software to work on
another platform.

. Example: Reversing systems developed for
windows to work over Unix environment

Lost Documentation

. Need to re-learn how the device operates, how
the device communicates

« Usually only done on antiquated devices or
integrated circuits

Product Analysis

. To determine how the product works
» Can be used to estimate product costs

« Check product legalities: Determine if a product
infringes on patent rights.

Security Auditing

. An audit determines if systems safeguard assets,
maintain data integrity, and operate effectively.

. The company usually knows about its own
products.

. Used to evaluate the risk of new products it may
create or use from other companies.

Access Restriction Removal

« Possible legal issues

. Usually done to demo programs, the full version
released as warez

. Sometimes, it becomes legal when a program or
game becomes very old.

Create Duplicates

« This can be very difficult, trying to reproduce the
entire system.

. Reverse engineering of copy restrictions on CDs
and other media.

. In certain cases, the user is allowed a duplicate.

Fraud

« Any system (usually embedded or integrated) that
stores critical information

« Most common example is credit cards / smart
cards

« Passwords and other information are often stored
on the card

Reverse Engineering Tools

of Software Systems

Topics

« Basic background on assembly language

« Types of reverse engineering tools and
demonstrations of these tools:
- Hex editors: WinHex, Tsearch
- Decompilers: REC, DJ

- Disassemblers/Debuggers: IDAPro, OllyDbg,
Win32Dasm, BORG

Computers understand binary code
Binary code can be written in hexadecimal

Hexadecimal code can be encoded in assembly language

Assembly language is human-readable but not as intuitive as source code

Decompilers convert assembly into an easier-to-read source code

11001111 10101 == CD21 == int 21

Assembly language is an abstraction
of hexadecimal code

G rdebug

mov ah,.?

mov dx,189

int 21

int 28

db "Hello Yorlds™

—nhello.com
—FCX

Cx 8888

G rdebug
ABGY : A188 ch-28
BB6Y? @118 88-CF L orldéuB.. .. >4. ..
BB6Y 6128 88-3E s M e e v
BARG? 8138 EB-86 L i1 E
i1 EB-15

c7-az2 i ol

FF-Cb o S |

BD—74 el R kL%

AH .89
DX .81687

[BX+6F1.DL
817F

JB8BCra2
8603E34860FB BYTE PTR [BB341.FB
BnBa4 AL.[SI1

Hex Editors

* Hex editors read executing programs from RAM.

* Display their contents in hexadecimal code.
* Enable the editing of th

Example: WinHex

(http://wwuw.sf-soft.de/)

e running hexadecimal co

e.

FULE EDPIT 3EMRGE FedTWew VIEY Teel3 SPEGULYIT 0pTVWy3 FYLE MA(AGER WerDev MELP
oBRhT [MRGE | RBeEs | OFemO | # 4 r AL 4
[unregistered] f Pl |
password. exe ”
Cihdemo
Offset 01 2 3 4 5 6 7 8 39 B CDEF
File size: 320KB 8 0gpo0000 | 4D SA 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 | HZ| i
32fEEbytes | ggopoolo | BA 00 00 00 00 00 OO 00 40 00 00 00 00 0O 00 00 @
o wignat] 00000020 |00 00 0000 00 00 00 0000 00 00 0000000000
; 00000030 |00 00 [PRSESR————— -
Unda fevel: 0| oooooosn |OE 1F e .11, 11ITh
Unda reverses: el 00000050 |69 73 | e e a0 is program canno
00000060 |74 20 | | oo t be run in DOS
Cieation ine: SR04 000070 | 6n F | | g S S
1405318 10ppoos0 | Ba B1 & Directed #1616 ‘+1réDa | &De ! 5Da |
Last wite time: 51/2004) 00000090 | FO DO | | o i wyomseomm #1952 5D 1 bBa | * T8 18bs !
151154} 00000040 |18 CF | | o b e &1 EDal =15 11ba !
AthiSties sl ooooooBo |18 cF & levplore #3708 415D | Richba |
Ieons gf 0D0DDOCO |00 00 | i Apsche #4023
00000000 |50 45 | | 3 oy poerprt 2508 FE. L
Window #: 1| ooooooEn (oo oo || gL a
No. of windows: 1] 000000E0 |00 30 | | D G pacsend izzee 0
Mods: Tetf| 00000100 |00 60 e Primaty Memory |)
Character set: ANslasCl§ 00000110 |04 00 T | - |
Dffsets: hesadesimal | 00000120 | 00 90 G Variable Riange 1
Bytes per page: 34x16-544§ 00000130 |00 0O) Password.ere [36.0 KE)
: - 0onnnagn, 100 0o 2 Ml i (0.7 MB)
Clipboard avalable | 00000150 | 94 64 73 Kemetzz.4110.9 ME] 1. (
TEMF folder 16.6GE fiee| 00000160 | 00 0O ’
ADOCUMET\af\LOCAL S iVTera | 00000170 | 00 00 Bl W
20000130 | oo oo | 0K] [Ceed | [rew
00000140 |00 0D
000001EO |00 00 00 00 00 0O 00 00 00 00 00 00 OO 00 00 00
000001CO |00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00
00000100 | E6 44 00 00 00 10 00 00 00 50 00 00 00 10 00 00
000001EO |00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60
000001F0 | 2E 72 64 61 74 61 00 00 7E 08 00 00 00 60 00 00
00000200 |00 10 00 00 00 60 00 00 00 00 00 00 00 00 00 00
00000210 |00 00 00 00 40 00 00 40 2E 64 61 74 61 00 00 00
Page 1 of 61 | Offset 0 =77 | Bluck

| Bl Microsaft ...] = demo

Decompilers

* Decompile binary programs into readable source code.

* Replace all binary code that could not be decompiled
with assembly code.

¢ —-1869742193> + 137;
€

BCxX = *(ehp = ni) \) 23
Exam le° RE(edx = #{ebp — 28> — ={ebp — 24> >> 2;
L eax = #(ehp — 8);
if(={gax + ecx * 4> ¥= =(ehp + edx * 4 — 280> {
LBA4A1 4BE("Invalid Password">;

(http://www.backerstreet.com/rec) , oko LbALLen:

qoto LO84811%9h;

LEE4BidEE('The password is xs". ebp — 48)>;
eax = B;

L@Eéﬁil?h

— Decompiles a program from osy = ohy

(restoredebhp;

>

1 Procedure: BxBA4811EF — BxA0481244
binary code to C pseudo-code. R e
Egﬁg P;;;e;ize: 4
*

LBB4811EF (A8 >

— Translates any binary it cannot [unknoun %/ void A8;

decompile into assembly code. Gavededis

edi = edi |
eax = =*(AB + 12>
ifc(tCal & 642> (

— Typically generates about 60- LT .
LBa4818A2 () ;
1f(LSg?Ei?sgg ?(EE;+ 16>, A8, AB> < B> £
70% of the program source code. b K Ml

ifdeax *= B> {
LBB4#A1 ?C7 e a x)
=(A8 + 28> = Ug
¥

6 Get Help [WriteQut [H Read File ¥ Prev Pg Bl Cut Text [Cur Pos
R T AT - ~p S e < a1l N Ty i -, "]

http://www.backerstreet.com/rec

Disassemblers/Debuggers

* Convert binary code into its assembly equivalent.
« Extract ASCII strings and used libraries.
* View memory, stack, and CPU registers.

* Run the program (with breakpoints)
« Edit the assembly code at runtime.

oLL

P EXE e (P e gy

G ¥l L
VEV PEBMG FLNGW3 OrTWW3 Ywpev PFELr

(el ex] e[| wieg g 4 = ufela]|w]ulc] s eln]R]e

IPULE FRS3VOR.

EEE
-8 x

] PUSH_EEF
Bt ad e SR
gigtens [. GBEC 10U EBP, ESP fegierers (P
1 &8 Ehepagen EHEH & Ec Bpishoey
i password. Ge4060E8 Ebi SRtEhag
. &% BC394000 H paseword. 00403960 SE handler instal lat ion ECh e
 gdiAi oouooe 00 R uaRo F A o fed Bl s
. &4:8925 peoeer 10U DUORD PTR FS:(e3,ESP =
D geEc 10 SUB ESP, 10
° 1 PUSH EBH L B _
L s PUSH E5T E1F 8048163F password.<HoduleEntryFoint |
. C 9 ESgmd aokie UFFEFEERD)
1 G965 Eg 80 oo PR S5 €8P 151, E5P 3 pijadadsaas
o © FF15 BComamns| CALL DUORD PTR O%: [CLKERNEL3Z.Getversio| kernel3z.Getversion Bl DRmelniochir Sf;FfEEEF’{
- B0 HOR EDH, EDH T8 B dnes Sobi pEFERECEE)
- BA0d Hou oL, B S 35 S2biv PFFDEGGAFFF
 §215 as7a40qe) 1ol DIERD PTR DS: (4079381, E0K Sl 52 pasn okl
Il - DB
: 157 Froponsg D B oR B LaseErr ERROR_SUC
* 5980 savadace ol nqun PTR D5: [4079341, ECK L S o i
1 CIEL &6 L ECx FL B98BBZ8E (MO, NE, NE, A, 5, PE, L, LE)
T g3 i -
310 enpry TIFSTORD TTESM4RE
o - go80 snvsanae ol EEQREQWR DS: 04675301, ECX 7o Goemep pacatton
. © B3 zc7sanon | fnl DHORD TR DS:r4a7a2C1, A £7¢ enony
. ° ° i £5 aR210000 | FALL passuord. 0043557 T4 enee o
v ~ ~ . esce TEST Ef, EAK Te ey
.vzn %g SNZ SHORT password, 60401708 it
z £5 97208000 | COLL passuord. 0481703 (e e
$ g3es Fo B0 DR PTR 61 E8P-41,0
L £8 216 L passuord. o462
© FFIE 88604560 CALL DUORD PTR DS: LCARERNELS2. GetComman| CostConnandL inef
|- & ze7e: DWORD FTR DS: [4B7ES51, ER
1 Es 32m (L passuord. B4
DA ievs OWORD FTR D31 4075141, ERi
1 E2 DEID [L pacsuord. 8648350
1 £ 1bin [L pacsword. B6da344F v
AEGE L Doccunrd.onda FES
ZFFre
Points
TIESLA I FETUR o Fevn 92 oERTaeT
FEATSE
EEERRERE| End of SEH ohaln
! 77E94809
7 FPES1o1 Al
7228 ¢ SeBaiass
el canaaRaa!
e ! 26431 65F | password. <Hodu leEntryFoint
Fl o e Bt
F 02 Ve 65 63 74
7% 75|77 eF 1z
3 G| o 36 6o
] .
il g
H 2 —
16 0d 09|60 08 0
[[Pavsed
Dt 224 - demo |HSup | [E2m - B Cd

SINMY SWREPR FOLDER

http://home.t-online.de/home/Ollydbg/

Disassemblers/Debuggers
Programs & Features chart

Dis- Processor String Disk Hex Memory Memory Library's
Product Assembly options Debugger extraction editor Hex editor Dumper used Decryptor
IDAPro X X X X X
OllyDbg X X X X X X X X
W32Dasm X X X X X X X X
BORG X X X X

Dr. Qasem Abu Al-

Reverse Engineering
Prevention Tools

“Code Obfuscators”
Such as Y0da's Cryptor, NFO

Code Obfuscation

d The process of modifying an executable so that it is no

longer useful to a hacker but remains fully functional.

— Modify actual method instructions or metadata

— Does not alter the program’s output.

d However, with enough time and effort, almost all code can

be reverse-engineered.

 The goal is to distract the reader with the complicated syntax
of what they are reading and make it difficult for them to

determine the true content of the message.

Code Obfuscation can be done in several ways.

d Example#1: Rename Obfuscation

» Use naming that make the code difficult for the reader to understand.

Original Source Code Before

Reverse-Engineered Source Code
Rename Obfuscation

After Rename Obfuscation

private void private void a(ab) {

CalculatePayroll (SpecialList employee- while (b.a()) {
Group) { a=Db.altrue);
while {emploveeGroup HasMore()) { aal);
employes = alfa);
employeeGroup GetlNext(true) ; }
employee UpdateSalary() ; }
Distribute Check(employee) ;

}
}

d Example#2: String Encryptions

» Encrypting the code of a program so you cannot view it in assembly.

Original Source Code Before 5tring

Reverse-Engineered Source Code
Encryption

After String Encryption

i';.iessageﬂux.shuw[”lnva]id

i';r.I-ESSaE,E'Eﬂx.ﬂhﬂ“’[ﬂ.b{?ﬂﬁﬁfﬁfﬁl'i“})
Anthentication - Try Again™)

Code Obfuscators/Encryption tools

Encrypts the code of a program so you cannot view

it in assembly.

Executable Executable

| Code Obfuscator |, | (Encrypted)

|l ovenA

INT 21

Anti-

debugging
Obfuscators Obfuscation techniques GUI
YO0da's Cryptor X X X

NFO X X

Example: YOda’s Cryptor

Code Obfuscation.

— Encrypts the code of a program.
Anti-Debugging.
— Detects all major debuggers and disassemblers.

GUI platform.
8 DR v . ﬂ!.:]ﬂ

File: L]

— Protection Ophong - |

[T Exit if Softlce iz loaded -
[™ Erase PE header | =l
[¥ Exitin the case of a bad CRC
v &nti Process Dumping

v Delete Import Information
[Dllf&pl name strings |

v &Pl Redirection

— Graphical user interface.

Crypt |

yOda.cjb.net

32

Assemble: Converting
Assembly Language Code
To

Machine Language Code

Assembly Programming

+ Machine Language
- binary
+ hexadecimal

- machine code or object code

-+ Assembly Language
* mnemonics

- assembler

- High-Level Language
+ Pascal, Basic, C

Reeaefﬁrﬁ ﬂ@fmg Dr. Qasem Abu Al-Haija

00 and Visual Language

Java

C++ Pascal

High-Level Language

Assembly Language

Machine Language

Why Assemble for Cybersecurity Experts?

Understanding assembly code is so important in Code interpretation.

Irrespective of the type of high-level language being used, it must first be translated into
assembly language before the code gets translated to machine code. This makes assembly
language still important despite the evolution of high-level languages.

Understanding assembly code is so important in Control System Resources.

It helps in taking complete control over the system and its resources. By learning assembly
language, the programmer can write the code to access registers and retrieve the memory
address of pointers and values.

Understanding assembly code is so important in Malware analusis.

Assembly is an essential programming language as cybersecurity experts might use it to
interpret malware and understand their modes of attack. Cybersecurity professionals defend
against traditional and contemporary malware continuously, so it's essential to understand
how malware functions.

Understanding assembly code is so important in malware reverse engineering.

Knowledge of assembly language programming is a must in malware reverse engineering
becallHRGINELMhors do not nd?MIBFPABHMNHARr source code, and for that r¥ason,

reverse engineering is done

What Does It Mean to Assemble Code?

Preprocessing
& Compiling

Source Code

Executable Code| -

Reverse Engineering

Linking

N

> |IAssembly Code

Assembly

Object Code

Dr. Qasem Abu Al-Haija

35

Key Benefits of Assembly Language

There is a one-to-one relationship between the assembly and

machine language instructions

What is found is that a compiled machine code implementation of a

program written in high-level language results in inefficient code

» More machine language instructions than an assembled version of an

equivalent handwritten assembly language program

Two key benefits of assembly language programming

- It takes up less memory

> It executes much faster

Languages in terms of applications

« One of the most beneficial uses of assembly language

programming is real-time applications.

. Real time means the task required by the application must be
completed before any other input to the program that will alter

its operation can occur.

. For example, the device service routine which controls the
operation of the floppy disk drive is a good example that is

usually written in assembly language

Languages in terms of applications

. Assembly language is not only good for controlling hardware

devices but also for performing pure software operations

- Searching through a large table of data for a special string of characters
- Code translation from ASCII to EBCDIC
- Table sort routines

- Mathematical routines

. Assembly language: perform real-time operations

. High-level languages: Those operations mostly not critical in time

Converting Assembly Language
Instructions to Machine Cod

OPCODE

D

W

MOD

REG

R/M

N

N

~

_/

YT

* An instruction can be coded with 1 to 6 bytes

« Byte 1 contains three kinds of information:

— Opcode field (6 bits) specifies the operation such as add, subtract, or move
— Register Direction Bit (D bit)
» Tells the register operand in REG field in byte 2 is source or destination operand

— 1:Data flow to the REG field from R/M
— 0: Data flow from the REG field to the R/M

— Data Size Bit (W bit)

» Specifies whether the operation will be performed on 8-bit or 16-bit data

— 0O: 8 bits
— 1: 16 bits

« Byte 2 has two fields:

— Mode field (MOD) — 2 bits

— Register field (REG) - 3 bits

— Register/memory field (R/M field) - 3 bits

Converting Assemboly Language
Instructions to Machine Cod

The sequence of commands used to tell a microcomputer what to do is
called a program

Each command in a program is called an instruction

8086 understands and performs operations for 117 basic instructions

The native language of the IBM PC is the machine language of 8086/8088
A program written in machine code is referred to as machine code

In 8086 assembly language, each of the operations is described by

alphanumeric symbols instead of just Os or 1s

ADD AX, BX

e T~

Opcode Source operand

Destination operand

Converting Assembly Language

Instructions to Machine Cod
 REG field is used to identify the register for the first operand

REG W=0 W =1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI

111 BH DI

Converting Assembly Language

Instructions to Machine Cod

2-bit MOD field and 3-bit R/M field together specify the second
operand

CODE EXPLANATION

00 Memory Mode, no displacement
follows*

01 Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bit
displacement follows

1 Register Mode (no
displacement)

*Except when R/M = 110, then 16-bit
displacement follows

(a)

MOD=11 EFFECTIVE ADDRESS CALCULATION

R/M W=0 w=1 R/M MOD =00 MOD =01 MOD=10
| oo0 AL AX 000 | (BX)+(ShH (BX)+(SI)+ D8 (BX)+(Sl)+ D16

001 CcL CX 001 | (BX)+(DI) ~ (BX)+(DI)+ D8 (BX)+(DI)+ D16

010 DL DX 010 | (BP)+(SI) (BP)+(Sl)+ D8 (BP)+(Sl)+ D16

011 BL BX 011 | (BP)+(DI) (BP)+(DI)+ D8 (BP)+(DI)+ D16

100 AH SP 100 | (SN (SI)+ D8 (Sh)+ D16

101 CH BP 101 | (DI) (DI) + D8 (DI) + D16

110 DH sl 110 | DIRECT ADDRESS (BP)+ D8 (BP)+ D16

m BH DI 111 | (BX) (BX)+ D8 (BX)+ D16

(b)

Example:

MOV BL,AL
Opcode for MOV = 100010

We'll encode AL so
— D=0 (AL source operand)

W bit = 0 (8-bits)

MOD = 11 (register mode)
REG = 000 (code for AL)
R/M =011 (Code for BL)

OPCODE D | W | MOD REG R/M
100010 0O 0 11 000 Ol1

MOV BL,AL => 10001000 11000011 = 88 C3h
ADD AX,[SI] => 00000011 00000100 = 03 04 h
ADD [BX][DI] + 1234h, AX => 00000001 10000001 h

=> 018134 12h

More Examples

ADD 5678H[BX][SI], CX 01 88 78 56 H
SUB DX, AX 29 C2 H
CMP AX, CX 39 C8 H
MOV [0004], AX A3 04 00 H
PUSH AX 50 H

POP DX

5A H

45

Disassemble: Converting
Machine Language Code

To
Assembly Language Code

What Does It Mean to Disassemble Code?

Preprocessing

& Compiling
Source Code > |IAssembly Code
&
<>
O\CDPS’ Assembly
Executable Code| - Object Code
Linking

N

Reverse Engineering Dr. Qasem Abu Al-Haija 46

Why is Disassembly Useful in Malware Analysis?

- It is not always desirable to execute malware:

disassembly provides a static analysis.

- Disassembly enables an analyst to investigate all
parts of the code, something that is not always

possible in dynamic analysis.

+ Using a disassembler and a debugger in combination

creates synergy.
Reverse Engineering Dr. Qasem Abu Al-Haija 47

Disassembly of Machine Codes

. Indeed, there’s no real difference between machine language and any other

programming language; machine language is just a little harder to read.

- Understandingit requires patience and the right reference.

. Finding the right reference is a large matter of knowing which CPU architecture

the machine language was written for as each type of CPU has its own dialect.

It can also be important to know what CPU mode the machine language was written for.

Modern x86 CPUs, for instance, can be configured to use 16- or 32-bit operands and addressing
by default, and the same sequence of machine language bytes may mean different things
depending upon the CPU’s state.

Matters become even more complex when 64-bit instructions are introduced.

Disassembly of Machine Codes

 Since we’relooking at a DOS (i.e., x86 real-mode) executable, a good referenceis

the Instruction Set Reference (ISR) volume from the Intel Architecture Software

Developer’s Manual.

. Thisis aformidable volume, but only a few pages are immediately interesting for

our purposes. For instance;

Pages 1-2 through 2-6 describe the basic layout of x86 machine language instructions. (Note
that since we’re dealing with real-mode machine language, we’re only interested in 16-bit
addressing modes.)

Pages A-1 through A-8 give the processor’s opcode map. (Note that since we’re dealing with
such an old program, we can assume that it only uses 8086 integer opcodes; this means that we

canignoreall two-byte and escape opcodes in the opcode map.)

8086 Instruction Set Opcodes (1)

Operation | Operands Opcode

ADC see ADD ADD opcode + $10, and xx010xxx (ModR/M byte) for $80-$83
ADD r/m8, reg8 $00

ADD r/m16, reg16 $01

ADD reg8, r/m8 $02

ADD reg16, /m16 $03

ADD AL, imm8 $04

ADD AX, imm16 305

ADD r/m8, imma38 $80 xx000xxx (ModR/M byte)

ADD r’/m16, imm16 $81 xx000xxx (ModR/M byte)

ADD r’/m16, imm38 $83 xx000xxx (ModR/M byte)

AND see ADD ADD opcode + $20, and xx100xxx (ModR/M byte) for $80, $81,$83
CALL 32-bit displacement | $9A

CALL 16-bit displacement | $SE8

CLD SFC

CMP See ADD ADD opcode + $38, and xx111xxx (ModR/M byte) for $80, $81,$83

CMPSB | ES:[DI]==DS:[Sl] | $A6

CMPW ES:[DI]==DS:[Sl] | $A7

DEC r'm8 SFE, xx001xxx (ModR/M byte)
DEC r’'m16 SFF, xx001xxx (ModR/M byte)
DEC reg16 $48 + reg16 code

DIV r’'m8 $F6, xx110xxx (ModR/M byte)
DIV r’'m16 SF7, xx110xxx (ModR/M byte)
HLT $F4

IDIV r'm8 $F6, xx111xxx (ModR/M byte)
IDIV r’m16 SF7, xx111xxx (ModR/M byte)
IMUL r'm8 $F6, xx101xxx (ModR/M byte)

IMUL r’'m16 SF7, xx101xxx (ModR/M byte)

8086 Instruction Set Opcodes (2)

Operation | Operands | Opcode

IN AL, addr8 $E4

IN AX, addr8 $ES

IN AL, port[DX] $EC

IN AX, port[DX] $ED

INC r/m8 $FE, xx000xxx (ModR/M byte)
INC r’'m16 SFF, xx000xxx (ModR/M byte)
INC reg16 $40 + reg16 code
IRET 48-bit POP $CF

JA 8-bit relative $77

JAE 8-bit relative $73

JB 8-bit relative $72

JBE 8-bit relative $76

JE 8-bit relative $74

JG 8-bit relative $7F

JGE 8-bit relative $7D

JL 8-bit relative $7C

JLE 8-bit relative $7E

JMP 32-bit displacement | $EA

JNE 8-bit relative $75

JZ 8-bit relative $74

LDS reg16, mem32 $C4

LES reg16, mem32 $C5

LODSB | AL = DS:[SI] $AC

LODSW | AX = DS:[SI] $AD

8086 Instruction Set Opcodes (3)

Operation | Operands | Opcode

LOOP 8-bit relative $E2

MOV r/m8, reg8 $88

MOV r/'m16, reg16 $89

MOV AL, mem8 $A0

MOV AX, mem16 $A1

MOV mems8, AL $A2

MOV mem16, AX $A3

MOV reg8, imma38 $BO + reg8 code

MOV reg16,imm16 $B8 + reg16 code

MOV r/m8, imma38 $C6, xx000xxx(ModR/M byte)
MOV r/m16, imm16 $C7, xx000xxx(ModR/M byte)
MOV r/m16,sreg $8C, xx0 sreg xxx(ModR/M byte)
MOV sreg, r’/m16 $8E, xx0 sreg xxx(ModR/M byte)

MOVSB | ES[DI]=DS:SI] | $A4

MOVSW | ES:[DI]=DS:SI] | $A5

MUL r/m8 $F6, xx100xxx (ModR/M byte)
MUL r/m16 $F7, xx100xxx (ModR/M byte)
NEG r/m8 $F6, xx011xxx (ModR/M byte)
NEG r/m16 $F7, xx011xxx (ModR/M byte)
NOT r/m8 $F6, xx010xxx (ModR/M byte)
NOT r’/m16 $F7, xx010xxx (ModR/M byte)

OR see ADD ADD opcode + $08, and xx001xxx (ModR/M byte) for $80, $81,$83

8086 Instruction Set Opcodes (4)

Operation | Operands Opcode

OuUT addr8, AL $E6

ouT addr8, AX $E7

ouT port[DX], AL $EE

ouT port[DX], AX $EF

POP r/m16 $8F

POP reg16 $58 + reg16 code

POP sreg $07 + ES=0,CS =8, SS = $10, DS = $18

PUSH r’/m16 S$FF, xx110xxx (ModR/M byte)

PUSH reg16 $50 + reg16 code

PUSH sreg $06 + ES=0,CS =8, SS = $10, DS = $18

REP $F3

REPNE $F2

RET 32-bit POP $CA

RET 16-bit POP $C2

SBB see ADD ADD opcode + $18, and xx011xxx (ModR/M byte) for $80, $81,$83
SCASB ES:[DI] == AL $AE

SCASW ES:[DI] == AX $AF

STD $FD

STOSB ES:[DI] = AL $AA

STOSW ES:[DI] = AX $AB

SUB see ADD ADD opcode + $28, and xx101xxx (ModR/M byte) for $80, $81,$83
XOR see ADD ADD opcode + $30, and xx110xxx (ModR/M byte) for $80, $81,$83

8086 Instruction Set Opcodes (5)

addr8 = 8-bit address of 1/O port

reg8 =AL=0,CL=1,DL=2,BL=3,AH=4,CH=5,DH=6,BH=7
reg16 =AX=0,CX=1,DX=2,BX=3,SP=4BP=5,SI=6,DI=7
sreg=ES=0,CS=1,SS=2,DS=3

mema8 = memory byte (direct addressing only)

mem16 = memory word (direct addressing only)

r/m8 = reg8 or mems3

r’/m16 = reg16 or mem16

iImm8 = 8 bit immediate

iImm16 = 16 bit immediate

Example 1 of Code Disassembly

Assume the first bytes of machine language code

are located at offset O1000H. They are:

8CCOO510000E1FA3 04000306 0C0O08ECO...

Disassemble this code to obtain an assembly

language code?

Example of Code Disassembly

8C CO MOV AX ES
0510 00 ADD AX OOIOH
OE PUSH CS

IF POP DS

A3 04 00 MOV [0004], AX
03 06 0C 00 ADD AX,[000C]

8E CO... MOV ES AX

Example 2 of Code Disassembly

Assume the first bytes of machine language code

are located at offset O1000H. They are:

018156 78 BECOB8A D8 OE 043D 0306 0C0O01F8CCO

Disassemble this code to obtain an assembly

language code.

Example of Code Disassembly

OOOOOH:
OO0OO04H:
OOOOG6H:
OOOO8H:
OOOO9H:
OOOODH:

OOO11H:

OOO12H:

01815678
8E CO
8A D8
OE
043D
0306 0OC OO
1F
8CCO

ADD [BX] [DI] + 7856H, AX
MOV ES, AX

MOV BL, AL

PUSH CS

ADD AL, 3DH

ADD AX, [0OOCH]

POP DS

MOV AX, ES

Online Assembler and Disassembler

Provide Assembler and Disassembler tools for
different microprocessor architectures
Try it here
https://shell-storm.org/online/Online-

Assembler-and-Disassembler/

Reverse Engineering Dr. Qasem Abu Al-Haija 59

Creating.EXE applications

Using MASM Assembler

verse Engineering Dr. Qasem Abu Al-Haija

60

Using MASM

Developed by Microsoft

Used to translate 8086 assembly language
into machine language

3 steps:

- Prepare.ASM file using a text editor
- Compile your.ASM file using MASM
- Create. EXE file using LINKer

- Once you have the. EXE file, debug can be used
to test and run the program

Reverse Engineering Dr. Qasem Abu Al-Haija 61

Using MASM

Select this option

M choose code template
" COM template -z and tiny executable file format, pure machine code.
(+ EXE template - advanced executable file. header: relocation, checksum.

(" BIM template - pure binary file, allows all sorts of customizations [advanced)

(" BOOT template - for creating floppy disk boot records [very advanced)

" empty workspace (" the emulator

| use Flat Assembler / Intel syntax [see: fasm_compatibility. asm in examples]

1] 4 Cancel

Reverse Engineering Dr. Qasem Abu Al-Haija 62

Using MASM

Ul ;3 multi-segment executable file template.
B2

H1 data segment

B4 ; add your data here?

E:‘ a pkey db “press any key...5" prepare your ASM code
L ends

a?

Ut stack segment

89 dw 128 dup<®>

18 ends

J B2

code segment

start:

; set segment registers:
mov ax, data
mov ds, ax

end start ; set entry point and stop the assembler.

13

14

15

16

17 mov es, ax

18

19 add vour code here

20

21 lea dx. pkey

22 mov ah, 9

23 int 21h ; output string at ds:dx
24

25 ; wait for any kevy....

26 mov ah, 1

27 int 21h

28

29 mov ax, 4cBBh ; exit to operating system.
38 int 21h

31 ends

14

Reverse Engineering Dr. Qasem Abu Al-Haija 63

Compile

=mus086 - assembler and m

Using MASM

rocessor emulator 4.08 — O X

. . . Voics
file edit bookmarks assembler emu math ascii codes help E°
D L= e , H > = @ » ? ®
new open examples save | compile emulate | calculator convertor | options help about
gé s multi=s ocopler status =
Ul data segm : (ml
A4 : agd external view
a5 ke i
@6 endsp y W save As >
a7
Ui stack se
T enﬂsd“’ < > v 4 T5> ThisPC > 0S(C) > emu8086 > MyBuild v C 2. Search MyBuild
11
12 code seg . —
17 start: Organize = New folder = w o
14 ; set se o
15 mow - .
16 g @l Desktop » Name Date modified Type Size
i Downloads # Mo items match your search,

] Documents #

Pictures »
& Save .exe

" Desktop Docun
7 My Slides

~ Round1

,

File name: | Qasem.exe

Save as type: executable files (*.exe)

neering Dr. Qasem Abu Al-Haija 64
~ Hide Folders Save Cancel

Using MASM

Assembled in 2 passes. Time spent: 0.015 seconds.
entry point not set!

"Qasem.exe" is compiled successfully into 823 bytes.

Listing 1s saved: "Qasem.exe.list”
Symbol table is saved: "Qasem.exe.symbol”

Run to see the output

VIEW... |
close

. . Extersal... y
Reverse Engineering . u Al- 5

g [v]

press any key..._

clear screen change font

Reverse Engineering

Using MASM

The output screen

Dr. Qasem Abu Al-Haija

66

Using MASM

The exe file can be reversed:

disassembled using IDA Pro
or

debugged using OlyDbg

Reverse Engineering Dr. Qasem Abu Al-Haija

67

Tnamnik you

Reverse Engineering Dr. Qasem Abu Al-Haija

68

	Slide 1: CY 411 Reverse Software Engineering Overview Reverse Engineering
	Slide 2: Reverse Engineering
	Slide 3: REing Mechanical Devices
	Slide 4: Antikythera mechanism
	Slide 5: Development Cycle
	Slide 6: Software Techniques
	Slide 7: Analysis Through Observation
	Slide 8: Disassembly
	Slide 9: Decompilation
	Slide 10: Motivations of Reverse Engineering
	Slide 11: Motivation of RE
	Slide 12: Interoperability
	Slide 13: Lost Documentation
	Slide 14: Product Analysis
	Slide 15: Security Auditing
	Slide 16: Access Restriction Removal
	Slide 17: Create Duplicates
	Slide 18: Fraud
	Slide 19: Reverse Engineering Tools of Software Systems
	Slide 20: Topics
	Slide 21: Program Abstractions
	Slide 22: Assembly language is an abstraction of hexadecimal code
	Slide 23: Hex Editors
	Slide 24: Decompilers
	Slide 25: Disassemblers/Debuggers
	Slide 26
	Slide 27
	Slide 28: Code Obfuscation
	Slide 29: Code Obfuscation can be done in several ways.
	Slide 30: Code Obfuscators/Encryption tools
	Slide 31: Example: Y0da’s Cryptor
	Slide 32: Assemble: Converting Assembly Language Code To Machine Language Code
	Slide 33
	Slide 34: Why Assemble for Cybersecurity Experts?
	Slide 35: What Does It Mean to Assemble Code?
	Slide 36: Key Benefits of Assembly Language
	Slide 37: Languages in terms of applications
	Slide 38: Languages in terms of applications
	Slide 39: Converting Assembly Language Instructions to Machine Cod
	Slide 40: Converting Assembly Language Instructions to Machine Cod
	Slide 41: Converting Assembly Language Instructions to Machine Cod
	Slide 42: Converting Assembly Language Instructions to Machine Cod
	Slide 43: Example:
	Slide 44: More Examples
	Slide 45: Disassemble: Converting Machine Language Code To Assembly Language Code
	Slide 46
	Slide 47: Why is Disassembly Useful in Malware Analysis?
	Slide 48: Disassembly of Machine Codes
	Slide 49: Disassembly of Machine Codes
	Slide 50: 8086 Instruction Set Opcodes (1)
	Slide 51: 8086 Instruction Set Opcodes (2)
	Slide 52: 8086 Instruction Set Opcodes (3)
	Slide 53: 8086 Instruction Set Opcodes (4)
	Slide 54: 8086 Instruction Set Opcodes (5)
	Slide 55: Example 1 of Code Disassembly
	Slide 56: Example of Code Disassembly
	Slide 57: Example 2 of Code Disassembly
	Slide 58: Example of Code Disassembly
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

