
CY 411 Reverse Software Engineering

Overview Reverse Engineering

Dr. Qasem Abu Al-Haija

Department of Cybersecurity

Faculty of Computer & Information Technology

Jordan University of Science and Technology

1 Reverse EngineeringDr. Qasem Abu Al-Haija

Reverse Engineering

⚫ Process of analyzing a subject system to create representations

of the system at a higher level of abstraction”

⚫ “Going backward through the development cycle.”

⚫ Discovering how a device usually works by taking it apart.

⚫ Generally considered lawful if the system was obtained

legitimately.

REing Mechanical Devices

⚫ Not what you may think.

⚫ Actually the reverse of the
engineering process, going from
a finished product to design.

⚫ Used to “digitize” old parts and
systems.

Antikythera mechanism

⚫ A famous example of
reverse engineering

⚫ Ancient mechanical
computer

⚫ Discovered in a wreck
in 1900, dated around
150-100 BC

Development Cycle

⚫ The waterfall model

⚫ Reverse
Engineering moves
through this
process in reverse.

⚫ May not end up
with the same
implementation.

Software Techniques

⚫ Analysis through observation of information
exchange

⚫ Disassembly

⚫ Decompilation

Analysis Through Observation
⚫ Very common for protocol reverse engineering.

⚫ Usually use a bus analyzer and or packet sniffers.

⚫ Can be assisted through the use of low-level debuggers

⚫ Example of tools: SoftICE, WireShark, …

Disassembly
⚫ Most programs, when compiled, are turned into

architecture-specific machine code.

⚫ Disassemblers take the binary executable and display its
assembly code.

⚫ Need a good understanding of assembly and usually a hex
editor.

⚫ Example of tools: W32Dasm, IDA Pro, …

Decompilation

⚫ A decompiler is a computer program that translates an

executable file to a high-level source file that can be

recompiled successfully.

⚫ It is the opposite of a typical compiler, which translates a

high-level language to a low-level language.

⚫ Example of tools:

 Mocha, JAD,…

Motivations of

Reverse Engineering

Motivation of RE

Interoperability

Lost documentation

Product analysis

Security auditing

Removal of access restrictions

Creation of duplicates

Fraud

Interoperability

⚫ Getting a device/piece of software to work on
another platform.

⚫ Example: Reversing systems developed for
windows to work over Unix environment

Lost Documentation

⚫ Need to re-learn how the device operates, how
the device communicates

⚫ Usually only done on antiquated devices or
integrated circuits

Product Analysis

⚫ To determine how the product works

⚫ Can be used to estimate product costs

⚫ Check product legalities: Determine if a product
infringes on patent rights.

Security Auditing

⚫ An audit determines if systems safeguard assets,
maintain data integrity, and operate effectively.

⚫ The company usually knows about its own
products.

⚫ Used to evaluate the risk of new products it may
create or use from other companies.

Access Restriction Removal

⚫ Possible legal issues

⚫ Usually done to demo programs, the full version
released as warez

⚫ Sometimes, it becomes legal when a program or
game becomes very old.

Create Duplicates

⚫ This can be very difficult, trying to reproduce the
entire system.

⚫ Reverse engineering of copy restrictions on CDs
and other media.

⚫ In certain cases, the user is allowed a duplicate.

Fraud

⚫ Any system (usually embedded or integrated) that
stores critical information

⚫ Most common example is credit cards / smart
cards

⚫ Passwords and other information are often stored
on the card

Reverse Engineering Tools

of Software Systems

Topics

⚫ Basic background on assembly language

⚫ Types of reverse engineering tools and

demonstrations of these tools:

− Hex editors: WinHex, Tsearch

− Decompilers: REC, DJ

− Disassemblers/Debuggers: IDAPro, OllyDbg,

Win32Dasm, BORG

Program Abstractions

Computers understand binary code

Binary code can be written in hexadecimal

Hexadecimal code can be encoded in assembly language

Assembly language is human-readable but not as intuitive as source code

Decompilers convert assembly into an easier-to-read source code

11001111 10101 == CD21 == int 21

Assembly language is an abstraction
of hexadecimal code

Hex Editors

• Hex editors read executing programs from RAM.

• Display their contents in hexadecimal code.

• Enable the editing of the running hexadecimal code.

Example: WinHex

(http://www.sf-soft.de/)

Decompilers
• Decompile binary programs into readable source code.

• Replace all binary code that could not be decompiled
with assembly code.

Example: REC

(http://www.backerstreet.com/rec)

— Decompiles a program from

binary code to C pseudo-code.

— Translates any binary it cannot

decompile into assembly code.

— Typically generates about 60-

70% of the program source code.

http://www.backerstreet.com/rec

Disassemblers/Debuggers
• Convert binary code into its assembly equivalent.

• Extract ASCII strings and used libraries.

• View memory, stack, and CPU registers.

• Run the program (with breakpoints).

• Edit the assembly code at runtime.

Example: OllyDbg

http://home.t-online.de/home/Ollydbg/

http://home.t-online.de/home/Ollydbg/

Product

Dis-

Assembly

Processor

options Debugger

String

extraction

Disk Hex

editor

Memory

Hex editor

Memory

 Dumper

Library's

used Decryptor

IDAPro x x x x x

OllyDbg x x x x x x x x

W32Dasm x x x x x x x x

BORG x x x x

Disassemblers/Debuggers
Programs & Features chart

Dr. Qasem Abu Al-
Haija

Reverse Engineering
Prevention Tools

“Code Obfuscators”
Such as Y0da’s Cryptor, NFO

Code Obfuscation

❑ The process of modifying an executable so that it is no

longer useful to a hacker but remains fully functional.

— Modify actual method instructions or metadata

— Does not alter the program’s output.

❑ However, with enough time and effort, almost all code can

be reverse-engineered.

❑ The goal is to distract the reader with the complicated syntax

of what they are reading and make it difficult for them to

determine the true content of the message.

Code Obfuscation can be done in several ways.

❑ Example#1: Rename Obfuscation

➢ Use naming that make the code difficult for the reader to understand.

❑ Example#2: String Encryptions

➢ Encrypting the code of a program so you cannot view it in assembly.

Code Obfuscators/Encryption tools

• Encrypts the code of a program so you cannot view

it in assembly.

Obfuscators Obfuscation

Anti-

debugging

techniques GUI

Y0da's Cryptor x x x

NFO x x

Code Obfuscator

Executable

(Encrypted)

♣↓↨☻¶╩♥•◘▲

Executable

INT 21

Example: Y0da’s Cryptor

y0da.cjb.net

• Code Obfuscation.

— Encrypts the code of a program.

• Anti-Debugging.

— Detects all major debuggers and disassemblers.

• GUI platform.

— Graphical user interface.

Assemble: Converting

 Assembly Language Code

To

Machine Language Code

Reverse EngineeringDr. Qasem Abu Al-Haija32

Assembly Programming

• Machine Language

• binary

• hexadecimal

• machine code or object code

• Assembly Language

• mnemonics

• assembler

• High-Level Language

• Pascal, Basic, C

• compilerReverse Engineering Dr. Qasem Abu Al-Haija 33

Why Assemble for Cybersecurity Experts?
Understanding assembly code is so important in Code interpretation.

Irrespective of the type of high-level language being used, it must first be translated into
assembly language before the code gets translated to machine code. This makes assembly
language still important despite the evolution of high-level languages.

Understanding assembly code is so important in Control System Resources.

It helps in taking complete control over the system and its resources. By learning assembly
language, the programmer can write the code to access registers and retrieve the memory
address of pointers and values.

Understanding assembly code is so important in Malware analysis.

Assembly is an essential programming language as cybersecurity experts might use it to
interpret malware and understand their modes of attack. Cybersecurity professionals defend
against traditional and contemporary malware continuously, so it's essential to understand
how malware functions.

Understanding assembly code is so important in malware reverse engineering.

Knowledge of assembly language programming is a must in malware reverse engineering
because malware authors do not normally publish their source code, and for that reason,
reverse engineering is done

Reverse Engineering Dr. Qasem Abu Al-Haija 34

DLLs

Object Code

Assembly CodeSource Code

Preprocessing
& Compiling

Assembly

Linking

Executable Code

What Does It Mean to Assemble Code?

Reverse Engineering Dr. Qasem Abu Al-Haija 35

Key Benefits of Assembly Language

⚫ There is a one-to-one relationship between the assembly and

machine language instructions

⚫ What is found is that a compiled machine code implementation of a

program written in high-level language results in inefficient code

➢ More machine language instructions than an assembled version of an

equivalent handwritten assembly language program

⚫ Two key benefits of assembly language programming

➢ It takes up less memory

➢ It executes much faster

Languages in terms of applications

⚫ One of the most beneficial uses of assembly language

programming is real-time applications.

⚫ Real time means the task required by the application must be

completed before any other input to the program that will alter

its operation can occur.

⚫ For example, the device service routine which controls the

operation of the floppy disk drive is a good example that is

usually written in assembly language

Languages in terms of applications

⚫ Assembly language is not only good for controlling hardware

devices but also for performing pure software operations

− Searching through a large table of data for a special string of characters

− Code translation from ASCII to EBCDIC

− Table sort routines

− Mathematical routines

⚫ Assembly language: perform real-time operations

⚫ High-level languages: Those operations mostly not critical in time

Converting Assembly Language
Instructions to Machine Cod

3

Converting Assembly Language
Instructions to Machine Cod

• The sequence of commands used to tell a microcomputer what to do is

called a program

• Each command in a program is called an instruction

• 8086 understands and performs operations for 117 basic instructions

• The native language of the IBM PC is the machine language of 8086/8088

• A program written in machine code is referred to as machine code

• In 8086 assembly language, each of the operations is described by

alphanumeric symbols instead of just 0s or 1s

Converting Assembly Language
Instructions to Machine Cod

Converting Assembly Language
Instructions to Machine Cod

Example:

More Examples

ADD 5678H[BX][SI], CX 01 88 78 56 H

SUB DX, AX 29 C2 H

CMP AX, CX 39 C8 H

MOV [0004], AX A3 04 00 H

PUSH AX 50 H

POP DX 5A H

Disassemble: Converting

Machine Language Code

To

Assembly Language Code

Reverse EngineeringDr. Qasem Abu Al-Haija45

DLLs

Object Code

Assembly CodeSource Code

Preprocessing
& Compiling

Assembly

Linking

Executable Code

What Does It Mean to Disassemble Code?

Reverse Engineering Dr. Qasem Abu Al-Haija 46

• It is not always desirable to execute malware:

disassembly provides a static analysis.

• Disassembly enables an analyst to investigate all

parts of the code, something that is not always

possible in dynamic analysis.

• Using a disassembler and a debugger in combination

creates synergy.

Why is Disassembly Useful in Malware Analysis?

Reverse Engineering Dr. Qasem Abu Al-Haija 47

Disassembly of Machine Codes

⚫ Indeed, there’s no real difference between machine language and any other

programming language; machine language is just a little harder to read.

− Understanding it requires patience and the right reference.

⚫ Finding the right reference is a large matter of knowing which CPU architecture

the machine language was written for as each type of CPU has its own dialect.

− It can also be important to know what CPU mode the machine language was written for.

− Modern x86 CPUs, for instance, can be configured to use 16- or 32-bit operands and addressing

by default, and the same sequence of machine language bytes may mean different things

depending upon the CPU’s state.

− Matters become even more complex when 64-bit instructions are introduced.

Disassembly of Machine Codes

⚫ Since we’re looking at a DOS (i.e., x86 real-mode) executable, a good reference is

the Instruction Set Reference (ISR) volume from the Intel Architecture Software

Developer’s Manual.

⚫ This is a formidable volume, but only a few pages are immediately interesting for

our purposes. For instance;

− Pages 1-2 through 2-6 describe the basic layout of x86 machine language instructions. (Note

that since we’re dealing with real-mode machine language, we’re only interested in 16-bit

addressing modes.)

− Pages A-1 through A-8 give the processor’s opcode map. (Note that since we’re dealing with

such an old program, we can assume that it only uses 8086 integer opcodes; this means that we

can ignore all two-byte and escape opcodes in the opcode map.)

8086 Instruction Set Opcodes (1)

8086 Instruction Set Opcodes (2)

8086 Instruction Set Opcodes (3)

8086 Instruction Set Opcodes (4)

8086 Instruction Set Opcodes (5)

Example 1 of Code Disassembly

Assume the first bytes of machine language code

are located at offset 01000H. They are:

8C C0 05 10 00 0E 1FA3 04 00 03 06 0C 00 8E C0 ...

Disassemble this code to obtain an assembly

language code?

Example of Code Disassembly

MOV AX ES

ADD AX 0010H

PUSH CS

POP DS

MOV [0004], AX

ADD AX , [000C]

MOV ES AX

8C C0

05 10 00

0E

1F

A3 04 00

03 06 0C 00

8E C0 ...

Example 2 of Code Disassembly

Assume the first bytes of machine language code

are located at offset 01000H. They are:

01 81 56 78 8E C0 8A D8 0E 04 3D 03 06 0C 00 1F 8C C0

Disassemble this code to obtain an assembly

language code.

Example of Code Disassembly

00000H: 01 81 56 78 ADD [BX] [DI] + 7856H, AX

00004H: 8E C0 MOV ES, AX

00006H: 8A D8 MOV BL, AL

00008H: 0E PUSH CS

00009H: 04 3D ADD AL, 3DH

0000DH: 03 06 0C 00 ADD AX, [000CH]

00011H: 1F POP DS

00012H: 8C C0 MOV AX, ES

Online Assembler and Disassembler

Provide Assembler and Disassembler tools for

different microprocessor architectures

Try it here

 https://shell-storm.org/online/Online-

Assembler-and-Disassembler/

Reverse Engineering Dr. Qasem Abu Al-Haija 59

Creating.EXE applications

Using MASM Assembler

Reverse Engineering Dr. Qasem Abu Al-Haija 60

Using MASM

• Developed by Microsoft

• Used to translate 8086 assembly language
into machine language

• 3 steps:

– Prepare.ASM file using a text editor

– Compile your.ASM file using MASM

– Create. EXE file using LINKer

– Once you have the. EXE file, debug can be used
to test and run the program

Reverse Engineering Dr. Qasem Abu Al-Haija 61

Using MASM
Select this option

Reverse Engineering Dr. Qasem Abu Al-Haija 62

Using MASM

Prepare your ASM code

Reverse Engineering Dr. Qasem Abu Al-Haija 63

Using MASM
Compile

Save .exe

Reverse Engineering Dr. Qasem Abu Al-Haija 64

Using MASM

Run to see the output

Reverse Engineering Dr. Qasem Abu Al-Haija 65

Using MASM

The output screen

Reverse Engineering Dr. Qasem Abu Al-Haija 66

Using MASM

The exe file can be reversed:

disassembled using IDA Pro

or

debugged using OlyDbg

Reverse Engineering Dr. Qasem Abu Al-Haija 67

Thank you

Reverse Engineering Dr. Qasem Abu Al-Haija 68

	Slide 1: CY 411 Reverse Software Engineering Overview Reverse Engineering
	Slide 2: Reverse Engineering
	Slide 3: REing Mechanical Devices
	Slide 4: Antikythera mechanism
	Slide 5: Development Cycle
	Slide 6: Software Techniques
	Slide 7: Analysis Through Observation
	Slide 8: Disassembly
	Slide 9: Decompilation
	Slide 10: Motivations of Reverse Engineering
	Slide 11: Motivation of RE
	Slide 12: Interoperability
	Slide 13: Lost Documentation
	Slide 14: Product Analysis
	Slide 15: Security Auditing
	Slide 16: Access Restriction Removal
	Slide 17: Create Duplicates
	Slide 18: Fraud
	Slide 19: Reverse Engineering Tools of Software Systems
	Slide 20: Topics
	Slide 21: Program Abstractions
	Slide 22: Assembly language is an abstraction of hexadecimal code
	Slide 23: Hex Editors
	Slide 24: Decompilers
	Slide 25: Disassemblers/Debuggers
	Slide 26
	Slide 27
	Slide 28: Code Obfuscation
	Slide 29: Code Obfuscation can be done in several ways.
	Slide 30: Code Obfuscators/Encryption tools
	Slide 31: Example: Y0da’s Cryptor
	Slide 32: Assemble: Converting Assembly Language Code To Machine Language Code
	Slide 33
	Slide 34: Why Assemble for Cybersecurity Experts?
	Slide 35: What Does It Mean to Assemble Code?
	Slide 36: Key Benefits of Assembly Language
	Slide 37: Languages in terms of applications
	Slide 38: Languages in terms of applications
	Slide 39: Converting Assembly Language Instructions to Machine Cod
	Slide 40: Converting Assembly Language Instructions to Machine Cod
	Slide 41: Converting Assembly Language Instructions to Machine Cod
	Slide 42: Converting Assembly Language Instructions to Machine Cod
	Slide 43: Example:
	Slide 44: More Examples
	Slide 45: Disassemble: Converting Machine Language Code To Assembly Language Code
	Slide 46
	Slide 47: Why is Disassembly Useful in Malware Analysis?
	Slide 48: Disassembly of Machine Codes
	Slide 49: Disassembly of Machine Codes
	Slide 50: 8086 Instruction Set Opcodes (1)
	Slide 51: 8086 Instruction Set Opcodes (2)
	Slide 52: 8086 Instruction Set Opcodes (3)
	Slide 53: 8086 Instruction Set Opcodes (4)
	Slide 54: 8086 Instruction Set Opcodes (5)
	Slide 55: Example 1 of Code Disassembly
	Slide 56: Example of Code Disassembly
	Slide 57: Example 2 of Code Disassembly
	Slide 58: Example of Code Disassembly
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

