Secure Assembly Coding
Week # 7 Lectures

Dr. Qasem Abu Al-Haija,

Department of Cybersecurity,

Secure Assembly Coding Dr. Qasem Abu Al-Haija

8086 Instruction Set

Group 2 : Arithmetic Instructions

1 addition
decrementation I--

division [
m 1 incrementation

Arithmetic Instructions:

ADD, ADC, SUB, SBB, INC, DEC, NEG, CMP, MUL,
IMUL, DIV, IDIV, DAA, DAS, AAA, AAS, AAD, AAM,
cBw, CWD.

Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

‘ Destination | Source
Addition Register Register
Register Memory —ee———
Memory Register
ADD a, b Add byte or word Register Immediate Reg 16
. Memory Immediate Reg 8
ADC g, b Add bytﬂ or word with carry Accumulator| Immediate Memory

(a) (b)
(a) Allowed operands for ADD and ADC

INC reg/mem Increment byte or word by one

(b) Allowed operands for INC

The AF, CF, OF, PF, SF and ZF flags are affected by the execution of ADD/SUB instruction

) Deslination | Source
Subtraction Register Register
Register Memory
SuBa,b Subtract byte or word Memory Register Destination Destination
’ Accumulator| Immediate Reg16 Register
. Reqgist | diat
SBRa,b Subtract byte or word with borrow MeEy | IR - Ew Memory
DEC reg/mem Decrement byte or word by one (0) (©) @
(b) Allowed operands for SUB and SBB instructions
NEG reg/ mem Negate bytc or WOI'd (c) Allowed operands for DEC instruction
(d) Allowed operands for NEG instruction
CMPa, b Compare byte or word

a = “reg” or “mem,” b = “reg” or “mem” or “data.”

3 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

Multiplication

MUL reg/mem

IMUL reg/mem
(signed)

Source =

Mem8/Mem16/Reg8/Reg16

Multiply byte or word unsigned
Integer multiply byte or word

for byte
[AX] < [AL] - [mem/reg]
for word

[DX]J{AX] < [AX] - [mem/
reg]

Division

DIV reg/mem

IDIV reg/mem

Source =

Mem8/Mem16/Reg8/Reg16

Divide byte or word unsigned

Intcger divide byte or word (signed)

[AX]
[mem/reg]}

16 = 8 bit; [AX] «
[AH] « remainder
[AL] « quotient
32+16 bit; [DX:AX]«
[DX] ¢« remainder
[AX] « quotient

[DX:AX]
[mem/reg]

—NOTE: if you are accessing memory with a single operand operation such
as MUL, DIV, INC..., then you will have to specify the type of data (byte or
word) ==>Two assembler directives are used for this purpose:

BYTE PTR

& WORD PTR

Dr. Qasem Abu Al-Haija

Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

« Examples:

— ADD BL, 80H ; Add immediate data 80H to BL

— ADD CX, 12BOH ; Add immediate data 12BOH to CX

— ADD AX, CX ; Add content of AX and CX and store result in AX

— ADD AL, [BX] ;Add AL to the byte from memory at [BX] and store result in AL.

— ADD CX, [SI] ; Add CX and the word from memory at [SI] and store result in CX.
— ADD [BX], DL ; Add DL with the byte from Mem at [BX] & store result in Mem at [BX].
— SUB AL, BL ; Subtract BL from AL and store result in AL

— SUB CX, BX ; Subtract BX from CX and store result in CX

— SUB BX, [DI] ; Subtract the word in memory at [DI] from BX and store result in BX

— SUB [BP], DL ;Subtract DL from the bytein Mem at [BP] & store result in Mem at [BP].
— INCCL ; Increment content of CL by 1

— INC AX ; Increment content of AX by 1
— INC BYTE PTR [BX] : Increment byte in memory at [BX] by 1

— INC WORD PTR [SI] ;5 Increment word in memory at [SI] by 1
5 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions
« Examples:

— MUL CH ; Multiply AL and CH and store result in AX

— MUL BX ; Multiply AX and BX and store result in DX-AX

— MUL BYTE PTR [BX] ; Multiply AL with byte in memory at [BX] & store result in AX
— IMUL BL ; Multiply AL with BL and store result in AX

— IMUL AX ; Multiply AX and AX and store result in DX-AX

— IMUL BYTE PTR [BX] : Multiply AL with byte from memory at [BX] & store resultin AX
— IMUL WORD PTR [SI]; Multiply AX with word from memory at [SI] & store result in DX-AX

— DIV DL ; Divide word in AX by byte in DL.
; Quotient is stored in AL and remainder is stored in AH
— DIV CX ; Divide double word (32 bits) in DX-AX by word in CX.

; Quotient is stored in AX and remainder is stored in DX
— DIV BYTE PTR [BX] ; Divide word in AX by byte from memory at [BX].
; Quotient is stored in AL and remainder is stored in AH.

6 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions
EX: if (AX) = 0005,, & (CL) =02, DIV CL- (AH)=01,, (Rem) & (AL) = 02,; (Quot).

EX: If (CX) =2 and (DX AX) = -5,, = FFFFFFFB,; = DX AX
IDIV, after this IDIV, DX and AX will contain:

FFFF FFFE
16-bit 16-bit
remainder = quotient =
_1 10 _2I0

EX: If (AL)=20,, & (BL) = 02, = MUL BL. =& AX will contain 0040,

EX: If (CL)=FDH =-3,, & (AL) =FEH =-2,, 2*IMUL CL = AX contains OOOG6H.

EX : If (AL) = FF,,= -1,, and (DH) = 02,, & IMUL DH=->AX = FFFE,, (-2,,).

Example: MOV
MOV
MOV
MOV
MOV
MUL

BX, 0050H
CX, 3000H

DS, CX
[BX],0006H
AX, 0002H
WORD PTR [BX]

reqizters

A,
B
-
o=
==
=

b=
SF
BEF
= |

(]|

0=
ES

o [oc
oo [so
|—'§§ l—lzz Remember, signed
Faco numbers:
CECE

ot | if 8bit(-128t0127)
[oooo
12000 if 16 bit (-32768 to
[zooo 32767)

II:IT"I:II:I

8086 Instruction Set

Group 2 : Arithmetic Instructions
; 0020+0100+1 = 0121

EX: ADC AX, [BX]

Before

AX 0020 Memory locations

DS 2020 20500

BX 0300 20501

CF 1

EX: SBBCH,DL ;03-02-
Before

CH 03

DL 02

CF 1

EX: CMP DH, BL.

Before Execution:
Assume:

(DH) = 40H

(BL) =30H

AX
00 DS
o1 BX
CF

1=0

Dr. Qasem Abu Al-Haija

0121

2020
0200

CH
DL
CF

After

Memory locations

20500 00
20501 o]
PF=1,AF=0,ZF=0,SF=0,0F=0

After
0
02
0 PF=0, AF=1,ZF=1,SF=0,0F =0

After Execution:

Result 10OH is not provided
Flags are: CF= 0O, PF=0,
AF=0, ZF=0, SF=0, § OF=0

Secure Assembly Coding

NEG (2’S COMPLEMENT)

NEG DESTINATION
DESTINATION REG., MEMORY (8-BIT OR 16-BIT)
EXAMPLE:

M :
oV Sk > (00000101
NEG B {—

Flags affected: ZF, OF, SF, CF -5 [11111011 |

9 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

« CBW: Convert byte to word (No Operand)
if high bit of AL =1then: AH =255 (OFFh)
Else, AH=0

Example:
MOVAX,O 3AH=0,AL=0 ClZ/SI O P
MOV AL, -5 ; AX=000FBh (251)
CcBW ;s AX=0FFFBh (-5) unchanged
RET

« CWD: Convert word to double word (No Operand)
if high bit of AX=1then: DX = 65535 (OFFFFh)
Else, DX=0
Example: cClz s o p
MOV DX,0 ;DX=0

MOV AX,O0 ; AX=0

unchanged

MOV AX, -5 ; DXAX=00000h:0OFFFBh
CwWD ; DX AX = OFFFFh:OFFFBh
RET

Dr. Qasem Abu Al-Haija

8086 Instruction Set

Group 2 : Arithmetic Instructions

« AAA (ASCII Adjust after Addition) instruction

— Must always follow the addition of two unpacked BCD operands in AL.

—When AAA is executed, the content of AL is changed to a valid unpacked BCD
number and clears the top 4 bits of AL.

—The CF is set and AH is incremented if a decimal carry out from AL is

generated. —___ASCII Table
« Example:
Let AL=05 decimal=0000 0101 A IR S T
BH=06 decimal=0000 0110 I
AH=00H A
Consider the execution of the following instructions:
ADD AL, BH ; AL=OBH=11 decimal and CF=0 | — oo
AAA ; AL=01 and AH=01 and CF=1 e

Since 05+06=11(decimal)=0101 H stored in AX in unpacked BCD form. When this
result is to be sent to the printer, the ASCII code of each decimal digit is easily
formed by adding 30H to each byte.

I
Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

* AAS: ASCII Adjust after Subtraction

—This instruction always follows the subtraction of one unpacked BCD operand
from another unpacked BCD operand in AL.

— It changes the content of AL to a valid unpacked BCD number and clears the
top 4 bits of AL.

—The CF is set, and AH is decremented if a decimal carry occurred.

« Example:
Let AL=09 BCD=0000 1001
CL=05 BCD =0000 0101
AH=00H

Consider the execution of the following instructions:
SUB AL, CL ; AL=04 BCD
AAS ; AL=04 BCD and CF=0, AH=00H

— AAA and AAS affect AF and CF flags and OF, PF, SF and ZF are left undefined.

— Another salient feature of the aboue two instructions are that the input data used in the
addition or subtraction can be even in ASCII form of the unpacked decimal number and
still we get the result in ordinary unpacked decimal number form and by adding 30H to
the result, again we get ASCII form of the result.

12 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

 AAD: The ASCII adjust AX before Division instruction

— Modifies the dividend in AH and AL, to prepare for the division of two valid
unpacked BCD operands.

— After the execution of AAD, AH will be cleared, and AL will contain the binary
equivalent of the original unpacked two-digit numbers.

— Initially AH contains the most significant unpacked digit and AL contains the least
significant unpacked digit.

« Example: To perform the operation 32 decimal / 08 decimal
Let AH=03H ; upper decimal digit in the dividend
AL=02H ; lower decimal digit in the dividend
CL=08H ; divisor
Consider the execution of the following instructions:

AAD ; AX=0020H (binary equivalent of 32 decimal in 16-bit form)
DIV CL ; Divide AX by CL; AL will contain quotient & AH will contain remainder.

— AAD affects PF, SF and ZF flags. AF, CF and OF are undefined after execution of AAD.

13 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Instruction Set

Group 2 : Arithmetic Instructions

 AAM: The ASCII Adjust AX after Multiplication instruction
— Corrects the value of a multiplication of two valid unpacked decimal numbers.
The higher order digit is placed in AH and the low order digit in AL.

« Example:

Let AL=05 decimal
CL=09 decimal

Consider the execution of the following instructions:
MUL CH; AX=002DH=45 decimal
AAM ; AH=04 and AL=05 (unpacked BCD form decimal number of 45)
; OR AX, 3030H:; To get ASCII code of the result in AH and AL

— Note: this instruction is used only when it is needed.
— AAM affects flags the same as that of AAD.

14 Dr. Qasem Abu Al-Haija Secure Assembly Coding

Summary of Arithmetic Instructions

Flag affected

Instruction Z-flag C-flag S-flag O-flag A-flag
ADD Yes Yes Yes Yes Yes
ADC Yes Yes Yes Yes Yes
SUB Yes Yes Yes Yes Yes
SBB Yes Yes Yes Yes Yes
INC Yes No Yes Yes Yes
DEC Yes No Yes Yes Yes
NEG Yes Yes Yes Yes Yes
CMP Yes Yes Yes Yes Yes
MUL No Yes No Yes No
IMUL No Yes No Yes No
DIV No No No No No
IDIV No No No No No
CBW No No No No No
CWD No No No No No

15

Dr. Qasem Abu Al-Haija

Secure Assembly Coding

Example: 8086 Assembly Programming Using MASM

Write a program to add two 8-bit data (FOH and 50H) in 8086
and store results in memory.

DATA SEGMENT ; Beginning of data segment
OPER1 DB FOH ; First operand
OPER2 DB 50H ; Second operand
RESULT DB O1 DUP (?) ; A byte of memory is reserved for result
CARRY DB O1 DUP (?) ; A byte is reserved for storing carry
DATA ENDS ; End of data segment
CODE SEGMENT ; Beginning of code dement
START: MOV AX, DATA s Initialize AX with the segment address of DS
MOV DS, AX i Mouve AX content to DS
MOV BX, OFFSET OPER1 ; Moue the offset address of OPERI1 to BX
MOV AL, [BX] ; Moue first operand to AL
ADD AL, [BX+1] ; Add second operand to AL
MOV S|, OFFSET RESULT ; Store offset address of RESULT in SI

16 Dr. Qasem Abu Al-Haija Secure Assembly Coding

Example: 8086 Assembly Programming Using MASM

MOV [SI], AL ; Store content of AL in the location RESULT
INC SI ; Increment Sl to point location of carry
JC CAR ; If carry =1, go to the place CAR
MOV [SI], OOH ; Store OOH in the location CARRY
JMP LOCH ; go to the place LOC1
CAR: MOV [SI], OH ; Store O1H in the location CARRY
LOC1: MOV AH, 4CH
INT 2IH ; Return to DOS prompt
CODE ENDS ; End of code segment
END START ; Program ends

In the above program, the instructions MOV AH, 4CH and INT 2IH at the
end of the program are used for returning to the DOS prompt after
executing the program in the computer. If instead of these two
instructions, if one writes HLT instruction, the computer will hang after
executing the program as the CPU goes to halt state and the user will not

be able to examine the result.

17

Dr. Qasem Abu Al-Haija Secure Assembly Coding

See other examples in
the separate ppt file
uploaded into Moodle

More Example_1

Dr. Qasem Abu Al-Haija Secure Assembly Coding

19

A

Dr. Qasem Abu Al-Haija

Secure Assembly Coding

