
Programming Concepts

Objectives

• Define computer programing languages

• Define a computer program

• Understand the basic terminologies

• Explore different types of programing languages

• List different programing language generations

• Identify different programming tools

• Explore different types of programing structures

• Identify the main steps to solve a problem using
programming languages

Programming Languages

• Programming languages are made up of keywords and
grammar rules designed for creating computer instructions

• Computer Program: a set of instructions that tell the
computer how to perform a task.

• Programmer: a person who writes the program instructions
(source code)

Terminologies

• Keyword/Command
– It is a word with a predefined meaning that is reserved by a

program that defines commands and specific parameters for that code
set. The number of keywords may differ from one language to another.

• executable vs. non-executable statements
– Executable statement: It usually starts with a key word and initiates

actions. In other words, it is a description of what and how the
program should take an action

– Non-Executable statement: It provides info about the nature of the
data or about the way the processing is to be done without causing
any processing action.

• Syntax vs. Semantic
– Syntax is the grammar rules that are used whenever a program in a

computer language is written. (like grammar in the natural language)
– Semantics is the function of the command. (like meaning in the natural

language)

Terminologies(cont’d)

• Variable vs. Constant
– Variable: it is a memory location and its values are normally

changed during the course of program execution.
• Naming a variable is part of the language syntax. Programmers should

follow the language guidelines to name variables. It could be different
from one language to others.

• Variable Declaration : it is to specify a variable’s name and
characteristics.

• Variable Datatype: It is a set of possible values and a set of allowed
operations on it. A data type tells the compiler or interpreter how the
programmer intends to use the data.

– Constant: it is a value that should not be altered by the program
during normal execution.
• Note: if it used as type qualifier then it is used to declare a constant

variable like in C language.

• Variable/constant name should be descriptive

Terminologies (cont’d)

• File name vs. filename extension
– File name: is a framework for naming a file in a way that

describes what they contain and how they relate to other
files.

– Filename extension: It indicates a characteristic of the file
contents or its intended use. A filename extension is
typically delimited from the filename with period(.).
• Example: obj, exe, dat, etc.

• File types
– Source
– Object
– Executable
– Data

Terminologies (cont’d)

• Interpreter:
– A program that translates source code into some

efficient intermediate representation or object code and
immediately executes that.

– It executes one statement at a time.

• Compiler:
– A system program that translates high-level language

(source code) to machine language (object code)
– It translates the entire source code (statements) at one

time.
– Assembler: it translates the assembly program (source

code) to the object code.

Programming Languages
Types & Generations

Programming Languages Types

• Low – Level Language

• High – Level Language

Programming Language Types

• Low-level languages typically include
commands specific to a particular CPU or
microprocessor family. It easy for the machine
to understand

– Machine Language. Programs are coded in binary
(0s and 1s)

– Assembly Language. It is a symbolic coded
sequence of instructions

Programming Language Types

• High-level Language:
– High-level languages use command words and

grammar based on human languages

– Languages that are easy to understand and to
write by humans using words from the English
language.
• Java

• C#

• C and C++

Computer Programming Language
Generations

• First Generation:
– Machine Language:

• It consists of binary instructions (0’s and 1’s) that a
computer can understand and respond to directly.

• Examples: 0101110110111001

• Second Generation
– Assembly Language:

• It is a low level programming language using the human
readable instructions.

• It is used in kernels and hardware drives.

– Example: Sub, Add, Mov.

Computer Programming Language
Generations (cont’d)

• Third Generation:
– Easy-to-remember command words
– Procedure Languages: It is a programming

language that specifies a series of well-
structured steps and procedures within its
programming context to compose a program.

– These are high-level languages like C, Fortran,
and Basic.

Computer Programming Language
Generations (cont’d)

• Fourth Generation:
– More closely resembles human language

– Object Oriented Language: It is a programming
paradigm that represents concepts as "objects"
that have data fields and associated methods.

– Languages that consist of statements that are
similar to statements in the human language.
These are used mainly in database programming
and scripting. Examples of these languages include
Java and Python.

Computer Programming Language
Generations (cont’d)

• Fifth-generation languages

• Based on a declarative programming paradigm.

• These are the programming languages that have
visual tools to develop a program. Examples of
these languages include Prolog.

programming paradigm

• The programming paradigm refers to a way of
conceptualizing and structuring the tasks a
computer performs.

Programming Tools

• An SDK (software development kit) is a collection of language-
specific programming tools that enables a programmer to
develop applications for a specific computer platform

• An IDE (integrated development environment) is a type of SDK
that packages a set of development tools into a sleek
programming application

• A component is a prewritten module, typically designed to
accomplish a specific task

• An API is a set of application programs or operating system
functions that programmers can access from within the
programs they create

• A VDE (visual development environment) provides
programmers with tools to build substantial sections of a
program

Solving problems using programming
language

• Identify and Understand the problem

• State/outline the solution

• Program planning

– Algorithm

• Flowchart

• Pseudocode

• Write the program source code

• Program testing and documentations

Program Planning

• The problem statement defines certain
elements that must be manipulated to achieve
a result or a goal

• You accept assumptions as true to proceed
with program planning

• Known information helps the computer to
solve a problem

• Determine variables & constants

Algorithms

• Set of steps for carrying out a task that can be
written down and implemented

• Start by recording the steps you take to solve the
problem manually

• Specify how to manipulate information

• Specify what the algorithm should display as a
solution

• Expressing an Algorithm
– Flowchart

– Pseudocode

Flowchart
• A flowchart is a

graphical
representation of
solution steps
(algorithms and
programming logic)
for a given
problem.

• Flowchart symbols
are the elements
you can use to
describe the steps
involved in a
workflow process. Flowchart Symbols - Bing images

about:blank

It A>B

Print BPrint A

Start

Read B

Stop

Read A

Yes No

Example: the following flowchart
represents a solution to find the
largest of two numbers:

(A &B).

Pseudocode

• A Pseudocode is defined as a step-by-step
description of an algorithm. It uses the simple
English language text as it is intended for
human understanding rather than machine
reading.

• Example: Find the largest of two numbers:

(A & B)?

Pseudocode

Step 1: Start

Step 2: Read number a

Step 3: Read number b

Step 4: if a > b , print a (Compare a and b using
greater than operator)

Step 5: else print b

Step 6: Stop

(Output: Largest number between a and b)

Writing the
program
source code

// C++ Program to Find Largest of two numbers

#include<iostream.h>
#include<conio.h>
void main()
{

clrscr();
int a, b, largest;
Cout << "Enter two number : ";
cin>> a >> b;
if(a>b)

{
largest=a;

}
else

{
largest=b;

}
cout<< "Largest of the two number is " <<largest;
}

• Use the
appropriate
language to write
the source code

to find the
largest of two
numbers.

• Example C, C++,
C #, Java, etc.

Program Testing and Documentation

• A computer program must be tested to ensure that it works
correctly.

• Program errors include:

– Syntax errors

– Runtime errors

– Logic errors

• A debugger can help a programmer read through lines of code and
solve problems.

• Comments are a form of documentation that programmers insert
into the program code.
– Example:

• // symbol for writing a single line comment and /* multiline comment in C++ and Java.

• # symbol for writing a single line or multiline comments in Python.

Program structures

• Sequence Structure

• Selection Structure

• Repetition Structure

Sequence
Structure:

Example:

Read two

numbers

and print

them.

Sequence
means that the
given
instructions are
executed in the
same order that
they were given.

Start

Input A

Input B

Print
A, B

Stop

Stop

Selection
Structure:

• Example:
Print the largest of

the two numbers?

A selection
structure is to be
able to select
between two or
more alternate
paths.

If A > B

Print BPrint A

Start

Read B

Stop

Read A

Yes No

Repetition
Structure

Example:

Print the largest

Number

among N

numbers

It allows a set of
instructions (code
section) to be
executed a number
of times based on
pre-condition or
post-condition.

Read Next

If L >
Next

Start

Stop

Read N, first

No

L = First

L = Next

Print L

C = 1

If C = N

Yes

No

C = C+1

References
&

Additional Resources

• New Perspectives on Computer Concepts, Comprehensive, by Dan Oja.

• Introduction To The Concepts Of Computer Programming

• Computer Programming Tutorial

• Introduction to Programming and Computer Science - Full Course video

about:blank
about:blank
about:blank

