s

Secure Assembly Coding
Week # 5 Lectures

Qasem Abu Al-Haija, PhD

Department of Cybersecurity

Secure Assembly Coding Dr. Qasem Abu Al-Haija

Intel 8086 pp
Programming
using Assembly
Language

Programming

Secure Assembly

Coding

Introduction

; PROGRAM TO ADD TWO 16-BIT DATA (METHOD-1)

DATA SEGMENT
ORG 1104H
SUM DW 0
CARRY DB 0
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE

ASSUME DS:DATA
ORG 1000H

;Assembler
;Assembler
;Assembler
;Agsembler
;Assembler
;Assembler
;Assembler

;Assembler
;Assembler

MOV AX, 205AH

directive
directive
directive
directive
directive
directive
directive

directive
directive

Program

A set of instructions written to solve a

problem.

Instruction

Directions which a microprocessor
follows to execute a task or part of a

task.

;Load the first data in AX register

MOV BX, 40EDH
. MOV CL, 00H

ADD AX,BX
MOV SUM, AX
JNC AHEAD
INC CL

AHEAD: MOV CARRY,CL
HLT

CODE ENDS
END

;Load the second data in BX register
;Clear the CL register for carry

;Add the two data,

sum will be in AX

;Store the sum in memory location (1104H)
;Check the status of carry flag

;If carry flag is set,increment CL by one

;Store the carry in memory location (1106H)

;Assembler directive
;Assembler directive

Secure Assembly Coding

Machine Language

W Binary bits

Dr. Qasem Abu Al-Haija

High Level

Computer language

Low Level

Assembly Language

English Alphabets
® ‘Mnemonics’

B Assembler Mnemonics —»
Machine Language

Secure
Assembly
Coding

Program template in EMU8086

DATA SEGMENT
: DEFINE YOUR DATA HERE
ENDS
STACK SEGMENT _ _ _
DW 128 DUP(O) ; keep it as is...stack contains 128
words of memory
ENDS
CODE SEGMENT
START:
MOV AX, DATA I S ——— t
; always include these three lines... ge
mgz [E)SS ' 2))((the address of data segment at
’ runtime
: WRITE YOUR CODE HERE

MOV AX, 4COOH ;Two lines: exit to the operating system
INT 21H and terminate the program

ENDS
END START Dr. Qasem Abu Al-Haija

Directives and Instructions

Assembly language statements are either directives or instructions

Instructions are executable statements. They are translated by the assembler
into machine instructions. Ex:

* CALL MySub ;transfer of control
« MOV AX,5 ;data transfer

Directives tells the assembler how to generate machine code and allocate
storage. Ex:

COUNT DB 50 ;creates 1 byte
;of storage
;initialized to 50

Secure Assembly Coding Dr. Qasem Abu Al-Haija 5

Steps to Produce an Executable File

linker

Executable
file

.

Source Assembler Object
file > file
library
The produces an

from the assembly language source

The object file contains machine language code with some external and relocatable addresses
that will be resolved by the linker. Their values are undetermined at that stage.

The extracts object modules (compiled procedures) from a

object file to produce the

file.

and links them with the

The addresses in the executable file are all resolved but they are still logical addresses.

Note: the assembler of EMU8086 is MASM assembler which is case insensitive

Naming in Assembly

= A name identifies either:
= a variable
= a label
=" a constant
= a keyword (assembler-reserved word).

Naming in Assembly (Cont.)

= A is a symbolic name for a location in memory that was allocated by a data allocation
directive. Ex:

count db 50 ; allocates 1 byte to
; variable count

= A is a name given to an instruction. It must be followed by *:’. Ex:

main:
mov ax, 5
Xor ax, bx
jump main

Naming in Assembly (Cont.)

* The first character must be a letter or any one of ‘@’, ‘_’, ‘¢’, ‘?
= subsequent characters can include digits

= A programmer chosen name must be different from an assembler reserved

word

» Advice: avoid using ‘@’ as the first character since many keywords start with it

Integer Constants

* Integer constants are made of numerical digits with, possibly, a signand a

suffix. Ex:

= -23 (a negative integer, base 10 is the default)

1011b (a binary number)

1011 (a decimal number)

OA7Ch (a hexadecimal number)

A7Ch (this is the name of a variable, a hexadecimal number must start with a decimal digit)

Character and String Constants

* They are any sequence of characters enclosed either in single or double quotation

marks. Embedded quotes are permitted. Ex:
n A’
= ‘ABC’
= “Hello World!”
= “123” (this is a string, not a number)
= “Thisisn’t a test”

= ‘Say “hello” to him’

Constants

= We can use the equal-sign (=) directive or the EQU directive to give a nameto a

constant. Ex:
one = 1 ;this is a constant
two equ 2; also a constant
* The EQU and = directives are equivalent

. (in contrast with data

allocation directives)

* It merely substitutes, , the value of the constant at each

occurrence of the assigned name

Constants (cont.)

= In place of a constant, we can use a constant expression involving the standard

operators used in HLLs: +, -, *, /

= Ex:the following constant expression is evaluated at assembly time and given a

name at assembly time:

A= (-3 *8) + 2
= A constant can be defined in terms of another constant:

B = (A+2)/2

8086
Directives

Secure Assembly Coding

8086 Assembler Directives

« Assembler is a program used to convert an ALP into equivalent MLP.
= |talso finds the address of each label.
= |t substitutes the value for each constant and variable
= |t finds out syntax errors and reports them to the programmer.
* To do so many commands needed by a programmer such as:
= Required storage for each constant/variable: Byte, Word, or other.
= Logical name of segments such as CODE or STACK or DATA segment.
= Type of different procedures such as FAR, NEAR, PUBLIC or EXTRN
= End of a segment, End of program, ... etc.
* These commands are used to support the assembler and ALP instructions.
= Such commands need to be defined by the assembler at the assemble time.
= Predefined alphabetical strings called assembler directives.

= (Called Directives (also called Pseudo-Instructions). Secure Assembly Coding
Dr. Qasem Abu Al-Haija

16

8086 Assembler Directives

Immediate

Operands - Register

MMemory
Arithhmetic &

. Instructions —) -
basu: elaements | Operations — Logic &
JrAP
Declaration @
Special —
Interupt o«
8086 Programming Assembly directives @

SMAODEL Shall

STACK
ﬁ Program template I— CODE

Instructions Bloc

EM D

« Assembler directives can be classified as follows:
—Groupl: Directives for variable and constant definition.
—Group2: Directives related to code (program) location.
—Group3: Directives for segment declaration.

—Group4: Directives for declaring procedure.
—Group5: Other assembler directives.

cure Assembly Coding

Dr. Qasem Abu Al-Haija

Simple Data Allocation Directives

The DB (define byte) directive allocates storage for one or more-byte values
[name] DB initval [,initval]
Each initializer can be any constant. Ex:
a d 10, 32, 41h ;allocate 3 bytes
b db 0Ah, 20h, ‘A’ ;same values as above

A question mark (?) in the initializer leaves the initial value of the variable

undefined. Ex:
c db ? rthe initial wvalue for ¢ is undefined

Everything that follows “;” is ignored by the assembler. It is thus a comment

Simple Data Allocation Directives (cont.)

= Astringis stored as a sequence of characters. Ex:
aString db “ABCD”
bString DB ‘A’ ,’'B’ ,’'C’ ,’'D’ ;same values
cString db 41h,42h,43h,44h ;same values again
= The is the address of its first byte. Ex: If the following data
segment starts at address O
.data
Varl db “ABC”

Var2 db “DEFG”
* Theaddressof VarlisO = the address of ‘A’
* Theaddressof ‘B’ is 1
* Theaddress of ‘C’is 2
* Theaddressof Var2is3
* Theaddressof ‘E’is 4 ...

Simple Data Allocation Directives (cont.)

= Define Word (DW) allocates a sequence of words. Ex:

A dw 1234h, 5678h ; allocates 2 words

* Intel’s x86 are processors.

* This means: the lowest order byte (of a word or doubleword) is always stored at the lowest

address.

= EXx:if variable A (above) is located at address O, we have:
= address: 0] 1 2 3
= palue: 34dh 12h 78h 56h

Simple Data Allocation Directives (cont.)

= Define Double Word (DD) allocates a sequence of double words. Ex:
B dd 12345678h ;allocates 1 double word
= |If thisvariableis located at address of O, we have:
= address: O 1 2 3
= palue: 78h 56h 34h 12h
= If avalue fits into a byte, it will be stored in the lowest ordered byte available. Ex:
V dw ‘A’
* thevalue will be stored as:
= address: O 1

= palue: 41h OOh

Simple Data Allocation Directives (cont.)

= The DUP operator enables us to repeat values when allocating storage (with
data allocation directives). Ex:

a db 100 dup(?) ;100 bytes uninitialized

b db 3 dup(“Ho”) ;6 bytes: “HoHoHo”

= DUP can be nested:
c d 2 dup(‘'a’, 2 dup('b’))

;this allocates 6 bytes: ‘abbabb’

8086 Assembler Directives- Variable/Constant Definition

To Sum Up

DB, DW, DD, DQ, DT, directives.
Reserve Byte, Word, Double Word, Quad Word, Ten

Bytes in memory for storing variables.

cEQUor =

The assembler does not allocate storage to a constant.

 DUP directive

Initialize Several Locations to an Initial Value.

Dr. Qasem Abu Al-Haija

* BYTE 8-BIT

* WORD 16-BIT
 DWORD 32-BIT
 FWORD 48-BIT
* QWORD ©64-8BIT

Example
« NUMS DB 20
- LISTDB1,2,8,9,5

Secure Assemblgzoding

8086 Assembler Directives- Variable/Constant Definition

Example

Comments

DATA1DB 20H

Reserve one byte to store DATAT initialized to 20H.

ARRAY1DB 10H,20H,30H

Reserve 3 bytes to store ARRAY1 initialized with 10H, 20H, 30H

CiTYy DB “DAMMAM”

Reserve a list named CITYT initialized with Chars’ ASCII codes.

DATA2 DW 1020H

Reserve one word to store DATA2 initialized to 1020H.

NUMBER EQU 50H

Assign the value 50H to NUMBER

NAME EQU “QASEM"

Assign the string “QASEM” to NAME

START DW 4 DUP (0)

Reserves 4 words starting at offset START in DS initialized to O.

BEGIN DB 100 DUP (?)

Reserves 100 bytes of uninitialized data to offset BEGIN in DS.

X DW 2A05H
Y DW 052AH
PRODUCT EQU X*Y

Using Expressions

SUNDAY EQU 1
MONDAY EQU SUNDAY +1

Using Expressions

Secure Assembly Coding
Dr. Qasem Abu Al-Haija

Example (1): Variable Definition

VAL1 DB 10

VAL2 DB OAH

ARRAY1DB3,5,1,0

CHAR1DB “A” ; SINGLE QOUTEA ARE OK TOO
VAL3 DB ?

STR1 DB “Hello World”

Msgl DB “welcome”, OAh, ODH
VAL4 DW 90A1H, OFH

BIG DD 11223344H

LIST DB 2,0, 1 See the representation of

DB 10 data in memory - next
DB 1 slide

24 Dr. Qasem Abu Al-Haija Secure Assembly Coding

Representing the data in memory

ADDRESSCONTENTS
o) 10 |e—
1 OA |e—
2 3 |e—
3 5
4 1
5 0]

6 “A” |e—
7 - |
8 “H” |e—
9 “E”
A “L”
B “L”

vat C
vaz D
ARRAY E
F
10
1"
CHAR1 12
VAL3 13
sTR1 14
15
16
17

“O”

SP

“W’l

I‘O"

[Rl!

a“ L”

IID!I

IIW”

“E”

“ L”

“C”

“0”

44— MSGI

18
19
1A
18
1C
1D
1E
1F
20
21
22
23

“M”

liE’l

OA

oD

Al

90

OF

00

44

33

22

i1

— \[AL4

<+ BIG

24
25
26
27

29
2A
2B
2C
20
2E
2F

4 LIST

26

Example (2): Using DUP Operator (For Arrays)

 ARR1BYTE 20 DUP(O) 5 20 bytes, all equal to zero
 ARR2 DB 20 DUP (0); SAME AS ABOVE
« LIST1 DB 20 DUP(?) ; 20 bytes, uninitialized

Dr. Qasem Abu Al-Haija Secure Assembly Coding

Exercise

* Suppose the following data segment starts at default:

e .data
- A DW

1,2

* B DW 6ABCh

« Z EQU

232

- C DB 'ABCD’

—A) Find t
—B) Find t
—C)Find t
— D) Find t

ne address of varia
ne address of varia
ne address of varia

Dr. Qasem Abu Al-

dle A.
ole B.

dle C.

ne address of character ‘C’.

Haija

Secure Assembly Coding

Example (3): Working with constants

28

COUNT =5

mov al, COUNT ; AL=5
COUNT =10

mov al, COUNT ; AL=10
COUNT =100

mov al, COUNT ; AL =100

Dr. Qasem Abu Al-Haija

Secure Assembly Coding

8086 Assembler Directives-Related to Code Location.

* ORG (ORIGIN) Directive.

Tells the assembler where to load instructions and data into memory.
Initialize CS and IP with initial address (logical) as a starting address.

If its not mentioned at the start of segment=>» Offset is initialized to OOOOH.

« Example: ORG O100H

The first instruction is stored from at offset O100H within the code segment.

* OFFSET and SEG Directives.

Used to determine the Offset and Segment addresses of a given data item.

« Example: MOV BX, OFFSETTABLE / MOV AX, SEG ARRAY1

 EVEN Directive.

Used to declare a data item to start at even memory address.

« Example: EVEN / ARRAY2 DW 20 DUP (O)

Dr. Qasem Abu Al-Haija

Secure Assembly Coding 29

Using pointers to access memory

* You can use any of the pointers in the data segment to access your data
and arrays such as BX, Sl, DlI.

« Assume we have the following array:
Numsdb 2,1, 5, 0,1 ; array contains 5 elements

1. Use a pointer BX to point at the first address in the array:
Movu BX, offset nums or LEA BX, nums

2. Start a loop and access the contents of the array using [BX]:
Mov AL, [BX]

3. move the pointer to the next location using:
INC BX
4. repeat the loop until you finish all the 5 elements

Example: Accessing the contents of an Array

.DATA
Numsdb 2,1, 5,0, 1 ; array contains 5 elements
.CODE
MOV CX, 5 ; counter for the loop
MOV BX, OFFSET NUMS ; let BX points to first location in Nums
LOOP1 : MOV AL, [BX] ; access location in Nums pointed at by BX
INC BX ; let BX point to the next location in Nums
DEC CX ; subtract1from the counter

JNZ LOOP1 ; repeat the loop until CX=0

31 Dr. Qasem Abu Al-Haija Secure Assembly Coding

Another Example: Access arrays without using offset

In this example, we will

.DATA .
access the memory using
Numsdb 2,1,5,0, 1 ; array contains 5 elements ~ another method, Just like
Higher-level Languages, and
.CODE using any pointer (BX, DI, SI)
MOV CX, 5 ; counter for the loop
MOV BX, O ; initialize BX to Zero... It will be the index for the array
LOOPT1 : MOV AL, Nums[BX] ; access location in nums pointed at by BX
INC BX ; let BX point to the next location in Nums
DEC CX ; subtract1from the counter

JNZ LOOPT ; repeat the loop until CX=0

32 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Assembler Directives- For Segment Declaration.

* SEGMENT and ENDS directives.

Indicate the Start &§ End of a logical segment (Segment name < 31 characters).

Segnam SEGMENT « Example: Programmer must then use 8086 instructions
START SEGMENT to load START into DS, such as:
X1 DB FiH
X2 DB S5OH MOV BX, START
X3 DB 25H MOV DS, BX
Segnam ENDS START ENDS

* ASSUME directive.

Links the logical segments with the declared segment names.

« Example1: CODE SEGMENT
ASSUME CS:CODE, DS:CODE, ES:CODE, SS:CODE
CODE ENDS

- Example 2: ASSUME CS : PROGRAM_1, DS : DATA_1, SS : STACK_1

33 Dr. Qasem Abu Al-Haija Secure Assembly Coding

8086 Assembler Directive- Procedures Declaration.

* PROC and ENDP directives.

Indicates the start and the end of a named procedure (NEAR or FAR).

 Examplel: SQUARE_ROOT PROC NEAR

SQUARE_ROOT ENDP
Define a procedure “SQUARE_ROOT”, which is to be called by a program located in the same

segment (Near).

« Example2: SQUARE_ROOTPROC FAR

SQUARE_ROOT ENDP
Define a procedure “SQUARE_ROOT”, which is to be called by a program located in another

segment (Far).

S A bly Codi
34 Dr. Qasem Abu Al-Haija ecure Assemoly Coding

8086 Assembler Directive- Macros Declaration.

« MACRO and ENDM directives.
Indicates the start and the end of a named MACRO (Can take parameters).

« Example1: CALCULATE MACRO
MOV AX, [BX] Can be used any
ADD AX, [BX+2] __time in the main
MOV [SI], AX program, just use its
ENDM name
Example 2: CALCULATE — MACRO OPERAND, RESULT

MOV BX, OFFSET OPERAND
Parameters OPERAND and RESULT can MOV AX, [BX]

be replaced by OPERAND1, RESULTY, and __ ADD AX, [BX+2]

OPERAND2, RESULT2 while calling the MOV SI, OFFSET RESULT
above macro as shown below: MOV [SI], AX
— ENDM
CALCULATE OPERANDI1, RESULT1
CALCULATE OPERANDZ2, RESULT2

35 | eecesesecnsscccsnsecassasens

- Seeure’Assembly Coding
Dr NDacem Ahit Al=-Haiia

8086 Assembler Directives-Other Directives.

PTR (Pointer) directive.
Used to declare the type of memory operand (prefixed by BYTE or WORD).

Examples: INC BYTEPTR[SI] / INC WORD PTR [BX].
NAME directive.
Used to assign a name to an assembly language program module.

Examples: NAME “Hi-World”

* TYPE directive.

Return the data type used to define a specific data (Word 2, Double 4, Byte 1).
Example: MOV BX, TYPE DATAL.

LENGTH Directive (or $ operator).

Used to determine the length of an array in bytes .
Example: MOV CX, LENGTH ARRAY

36

 See other directives such as: Dr. Qasem Ab{: Al-Haija
SHORT, LABEL, GROUP, EXTRN & PUBLIC, GLOBAL & LOCAL secure Assembly Coding

37

Example: Using $ operator to calculate the
size of arrays/lists

« Example (1)
—Listdb 1,5, 2,8,9,10, 3, 1
— List_size = ($ - list) ;535 list equals 8

« Example (2)

— myString "This is a long string, containing"
— myString_len = ($ - myString) ;;;; list equals 33

Dr. Qasem Abu Al-Haija Secure Assembly Coding

38

More Examples

Dr. Qasem Abu Al-Haija Secure Assembly Coding

Example

Declare an array NUMS with ten 8-bit numbers, then
write the code to add 2 to each number stored in NUMS

SOIUtion I Address

Declare the array in the DATA SEGMENT

.DATA
NUMS DB 2, 4, 10, O, 5,100, 20, 3,1, 7

40 Dr. Qasem Abu Al-Haija Secure Assembly Coding

41

e
-

=

=
=>

=

.CODE
MOV CX,10 Loop Counter

MOV BX, OFFSET NUMS ; BX points

Address

BX =

at first Location
MOV AL, 2 ;Number to be added %

=P Next: ADD [BX], AL :add 2toarray contents

INC BX ;Point to next location

DEC CX ;If we are not done
JNZ NEXT keep repeating

SJ 4
CX

BX

Dr. Qasem Abu Al-Haija

BX =y

NUMS

Secure Assembly Coding

Main Sources for these slides

K. R. Irvine. Assembly Language for x86 Processors, 8th edition, Prentice-Hall
(Pearson Education), June 2019. ISBN: 978-0135381656.

B. Dang, A. Gazet, E. Bachaalany. Practical Reverse Engineering: x86, x64, ARM,
Windows® Kernel, Reversing Tools, and Obfuscation. John Wiley & Sons, June 2014.
ISBN: 978-1-118-78731-1

Qasem Abu Al-Haija, “Microprocessor Systems”, King Faisal University, Saudi
Arabia

Ghassan Issa, “Computer Organization”, Petra University, Jordan.

Secure Assembly Coding Dr. Qasem Abu Al-Haija 42

43

~—

Dr. Qasem Abu Al-Haija

Secure Assembly Coding

