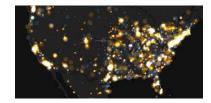
# **Data Science**

### Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
  - Gather whatever data you can whenever and wherever possible.
- Expectations
  - Gathered data will have value either for the purpose collected or for a purpose not envisioned.






E-Commerce



Traffic Patterns



Social Networking: Twitter



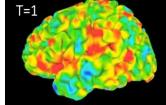
200

or Networks Co

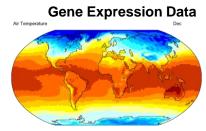


### **Why Data Science? Commercial Viewpoint**

- Lots of data is being collected and warehoused
  - Web data
    - •Google has Peta Bytes of web data
    - Facebook has billions of active users
  - purchases at department/ grocery stores, e-commerce
    - Amazon handles millions of visits/day
  - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
  - Provide better, customized services for an edge (e.g. in Customer Relationship Management)




### Why Data Science? Scientific Viewpoint


- Data collected and stored at enormous speeds
  - remote sensors on a satellite

 NASA EOSDIS archives over petabytes of earth science data / year

- telescopes scanning the skies
  Sky survey data
- High-throughput biological data
- scientific simulations
  - terabytes of data generated in a few hours
- Data science helps scientists
  - in automated analysis of massive datasets
  - In hypothesis formation



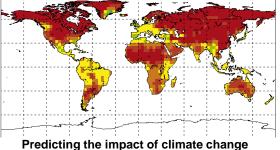
fMRI Data from Brain



Surface Temperature of Earth

#### Sky Survey Data

### **Great Opportunities to Solve Society's Major Problems**




Improving health care and reducing costs

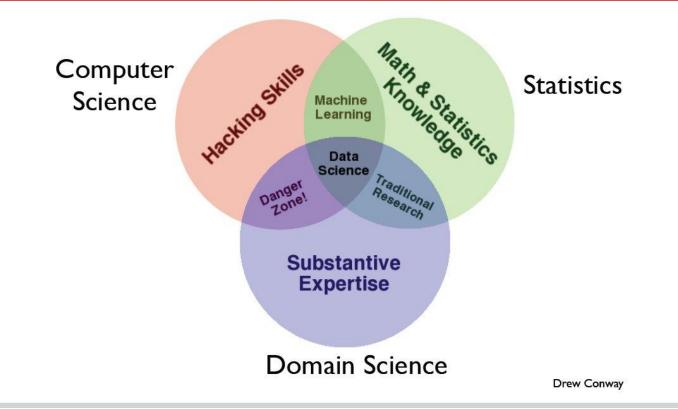


Finding alternative/ green energy sources

CCCms/A2a January to January Mean Temperature (degrees C) 2080s relative to 1961-90






Reducing hunger and poverty by increasing agriculture production

## What is Data Science?

Like any emerging field, it isn't yet well defined, but incorporates elements of:

- Exploratory Data Analysis and Visualization
- Machine Learning and Statistics
- High-Performance Computing technologies for dealing with scale.

## **Skill Sets for Data Science**



# **Appreciating Data**

Computer Scientists do not naturally appreciate data: it's just stuff to run through a program.

The usual way to test algorithm performance is to run the implementation on "random data".

But interesting data sets are a scarce resource, which requires hard work and imagination to obtain.

# **Computer vs. Real Scientists (1)**

- Scientists strive to understand the complicated and messy natural world, while computer scientists build their own clean and organized virtual worlds. Thus:
- Nothing is ever completely true or false in science, while everything is either true or false in Computer Science / Mathematics.

# **Computer vs. Real Scientists (2)**

- Scientists are data-driven, while computer scientists are algorithm-driven.
- Scientists obsess about discovering things, which computer scientists invent rather than discover.
- Scientists are comfortable with the idea that data has errors; computer scientists are not.

## Genius vs. Wisdom

Software developers are hired to produce code. Data Scientists are hired to produce insights. Genius shows in finding the right answer!!! Wisdom shows in avoiding the wrong answers. Data science (like most things) benefits more from wisdom than from genius.

# **Developing Wisdom**

- Wisdom comes from experience.
- Wisdom comes from general knowledge.
- Wisdom comes from listening to others.
- Wisdom comes from humility, observing how often you have been wrong and why/how.

I seek pass on wisdom, through my experience on the difficulty of making good predictions.

# **Developing Curiosity**

- The good data scientist develops a curiosity about the domain/application they are working in.
- They talk shop with the people whose data they are working on.
- They read the newspaper every day, to get a broader perspective on the world.

# **Asking Good Questions**

Software developers are not encouraged to ask questions, but data scientists are:

- What exciting things might you be able to learn from a given data set?
- What things do you/your people really want to know?
- What data sets might get you there?

# **Let's Practice Asking Questions!**

Who, What, Where, When, and Why on the following datasets:

- Baseball-reference.com
- Google ngrams
- NYC taxi cab records

## **Baseball-Reference.com: biosketch**

| <b>SASEBALL-</b>                                                                                     | S-R       | : M  |                       |              |                                          |                                          |                                                                                                  |
|------------------------------------------------------------------------------------------------------|-----------|------|-----------------------|--------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|
| REFERENCE.COM                                                                                        |           | Γ    |                       |              |                                          |                                          |                                                                                                  |
| play index players teams seasons managers leaders awards postseason boxes japan nlb mi               | nors di   | raft |                       |              |                                          |                                          |                                                                                                  |
| Mobile Site You Are Here > Home > Encyclopedia of Players > R Listing > Babe Ruth Statistics and     |           |      |                       |              |                                          |                                          |                                                                                                  |
|                                                                                                      | Tran      | 820  | tions                 |              |                                          |                                          |                                                                                                  |
| News: s-r blog: KBO Stats back to 1999 – Baseball-Reference.com                                      |           | Suit |                       |              |                                          |                                          |                                                                                                  |
| Babe Ruth Player Page » Batting Pitching Fielding Minors News Archive (1456) Bullpen Oracle          |           |      |                       |              |                                          |                                          | m Baltimore (International) for more than \$25000. more than \$25000                             |
|                                                                                                      |           |      |                       |              |                                          | ees from the Boston Red Sox              | s for \$100,000.                                                                                 |
| AT                                                                                                   |           |      |                       |              | e New York Yankee<br>ee Agent with the E |                                          |                                                                                                  |
| Babe Ruth                                                                                            |           |      |                       |              |                                          | or 17 or 1700                            |                                                                                                  |
| 1 and 1                                                                                              | The tr    | ansa | ction information use | ed here was  | obtained free of charge                  | from and is copyrighted by <u>Retros</u> | <u>Sheet</u> . We attempt to update transactions throughout the season.                          |
| Like 1,213 people like this. 8+1 +25 Recommend this                                                  | -         | -    |                       |              |                                          |                                          |                                                                                                  |
|                                                                                                      | Sala      | 'les | Convert to YYYY       | \$\$'s ‡ Sal | aries may not be compl                   | ete (especially pre-1985) and may        | y not include some earned bonuses                                                                |
| George Herman Ruth (Babe, The Bambino or The Sultan Of Swat)                                         | Year A    | ge   | Team                  | Salary       | ServTm(OpnDay)                           | Sources                                  | Notes/Other Sources                                                                              |
| Positions: Outfielder and Pitcher                                                                    | 1914 19   | в    | loston Red Sox        | \$2,50       | 0 7 Bi                                   | I James Historical Abstract              | Annualized rate; came up late in season                                                          |
| Bats: Left, Throws: Left                                                                             | 1915 20   | В    | loston Red Sox        | \$3,50       | 0 ? Bi                                   | I James Historical Abstract              |                                                                                                  |
| Height: 6' 2", Weight: 215 lb.                                                                       | 1916 21   | В    | loston Red Sox        | \$3,50       | 0 7 Co                                   | ntract at HOF                            |                                                                                                  |
|                                                                                                      | 1917 22   |      | loston Red Sox        | \$3,50       |                                          | ntract at HOF                            | BJHA: \$5,000; Baseball Timeline \$7,000                                                         |
|                                                                                                      | 1918 23   |      | loston Red Sox        | \$9,00       |                                          | an Wood, 1918, at 183                    | Includes \$1,000 midseason raise, \$1,000 WS bonus                                               |
| Born: February 6, 1895 in Baltimore, MD                                                              | 1919 24   |      | lew York Yankees      | \$10,000     |                                          | chael Haupert research of HOF contract   | s Contract at HOF: 10000.00,                                                                     |
| High School: St. Mary's HS (Baltimore, MD) (All Transactions)                                        | 1920 25   |      | lew York Yankees      | \$20,000     |                                          |                                          | s Bill James Historical Abstract: 20000.00,                                                      |
| Debut: July 11, 1914 (Age 19.155)                                                                    | 1921 26   | N    | lew York Yankees      | \$20,000     | * ? Mi                                   | chael Haupert research of HOF contract   | s Bill James Historical Abstract: 30000.00, Plus \$5K for '20 and '21 exhibitions, \$50/HR (59)m |
| Rookie Status: Exceeded rookie limits during 1915 season [*]                                         | 1922 27   |      | lew York Yankees      | \$52,000     |                                          | chael Haupert research of HOF contract   | s Bill James Historical Abstract: 52000.00,                                                      |
| Teams (by GP): Yankees/RedSox/Braves 1914-1935                                                       | 1923 28   | N    | lew York Yankees      | \$52,000     |                                          | chael Haupert research of HOF contract   | s Bill James Historical Abstract: 52000.00,                                                      |
| Final Game: May 30, 1935 (Age 40.113)                                                                | 1924 29   | N    | lew York Yankees      | \$52,000     | * ? Mi                                   | chael Haupert research of HOF contract   | s Bill James Historical Abstract: 52000.00,                                                      |
| Inducted into the Hall of Fame by BBWAA as Player in 1936 (215/226 ballots). Induction ceremony in ( | 1925 30   | N    | lew York Yankees      | \$52,000     | * ? Mi                                   | chael Haupert research of HOF contract   | s Bill James Historical Abstract: 52000.00,                                                      |
| View Babe Ruth Page at the Baseball Hall of Fame (plague, photos, videos).                           | 1926 31   |      | lew York Yankees      | \$52,000     |                                          |                                          | s Bill James Historical Abstract: 52000.00,                                                      |
| Died: August 16, 1948 in New York, NY (Aged 53.192)                                                  | 1927 32   |      | lew York Yankees      | \$52,000     |                                          | chael Haupert research of HOF contract   | s 5/23/27 AL letter:70000.00,                                                                    |
| Buried: Gate of Heaven Cemetery, Hawthorne, NY                                                       | 1928 33   |      | lew York Yankees      | \$52,000     |                                          | chael Haupert research of HOF contract   |                                                                                                  |
| View Player Bio from the SABR BioProject                                                             | 1929 34   |      | lew York Yankees      | \$52,000     |                                          | chael Haupert research of HOF contract   |                                                                                                  |
| About biographical information                                                                       | 1930 35   |      | lew York Yankees      | \$70,000     |                                          |                                          | Bill James Historical Abstract: 80000.00,                                                        |
|                                                                                                      | 1931 36   |      | lew York Yankees      | \$70,000     |                                          |                                          | Bill James Historical Abstract: 80000.00,                                                        |
|                                                                                                      | 1932 37   |      | lew York Yankees      | \$70,000     |                                          |                                          | M. Smelser, Life That Ruth Built, p. 441:75000.00, Plus 25% of all exhibition-game profits       |
|                                                                                                      | 1933 38   |      | lew York Yankees      | \$80,000     |                                          |                                          | M. Smelser, Life That Ruth Built, p. 456:52000.00,Plus 25% of revenue from in-season exhibitions |
|                                                                                                      | 1934 39   |      | lew York Yankees      | \$80,000     |                                          |                                          | s 1/16/36 TSN, per government report: 36696.00,\$35,000 salary plus 25% of exhibition profits    |
|                                                                                                      | 1935 40   |      | lew York Yankees      | \$75,000     |                                          |                                          | Bill James Historical Abstract: 35000.00, Annualized rate; retired early in season               |
|                                                                                                      | 1936 41   |      | lew York Yankees      | \$52,00      |                                          | chael Haupert research of HOF contract   |                                                                                                  |
|                                                                                                      | 1937 42   | N    | lew York Yankees      | \$35,00      | 0 ? Mi                                   | chael Haupert research of HOF contract   | <u>8</u>                                                                                         |
|                                                                                                      | Career to | date | (may be incomplete)   | \$1,020,00   | D                                        |                                          |                                                                                                  |

# **Statistical Record of Play**

Summary statistics of each years batting, pitching, and fielding record, with teams and awards.

Babe Ruth Player Page \* Batting Pitching Fielding Minors News Archive (1456) Bullpen Oracle

n EloRater Fine Details · Last updated Jun 3, 2014 9:17AM

I-Time Rank (among batters): #1. BABE RUTH... #2. Lou Gehrig... #3. Ted Williams... #4. Honus Wagner... 🚺

Standard Batting More Stats Glossary · Show Minors Stats · SHARE · Embed · CSV · PRE · LINK · ?

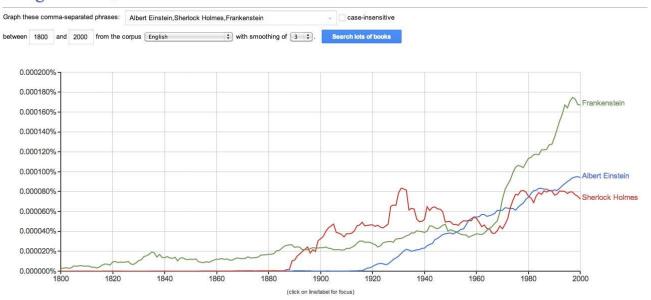
rs Game Logs ▼ Splits ▼ HR Log Finders

| Year    | Age    | Tm  | Lg | G    | PA    | AB   | R    | н    | 2B  | 3B  | HR  | RBI  | SB  | CS  | BB   | SO   | BA   | OBP  | SLG  | OPS   | OPS+ | тв   | GDP | HBP | SH  | SF | IBB | Pos      | Awards |
|---------|--------|-----|----|------|-------|------|------|------|-----|-----|-----|------|-----|-----|------|------|------|------|------|-------|------|------|-----|-----|-----|----|-----|----------|--------|
| 1914    | 19     | BOS | AL | 5    | 10    | 10   | 1    | 2    | 1   | 0   | 0   | 0    | 0   | 0   | 0    | 4    | .200 | .200 | .300 | .500  | 49   | 3    |     | 0   | 0   |    |     | /1       |        |
| 1915    | 20     | BOS | AL | 42   | 103   | 92   | 16   | 29   | 10  | 1   | 4   | 20   | 0   | 0   | 9    | 23   | .315 | .376 | .576 | .952  | 188  | 53   |     | 0   | 2   |    |     | 1        |        |
| 1916    | 21     | BOS | AL | 67   | 152   | 136  | 18   | 37   | 5   | 3   | 3   | 16   | 0   |     | 10   | 23   | .272 | .322 | .419 | .741  | 121  | 57   |     | 0   | 4   |    |     | 1        |        |
| 1917    | 22     | BOS | AL | 52   | 142   | 123  | 14   | 40   | 6   | 3   | 2   | 14   | 0   |     | 12   | 18   | .325 | .385 | .472 | .857  | 162  | 58   |     | 0   | 7   |    |     | 1        |        |
| 1918    | 23     | BOS | AL | 95   | 382   | 317  | 50   | 95   | 26  | 11  | 11  | 61   | 6   |     | 58   | 58   | .300 | .411 | .555 | .966  | 192  | 176  |     | 2   | 3   |    |     | 07138    |        |
| 1919    | 24     | BOS | AL | 130  | 543   | 432  | 103  | 139  | 34  | 12  | 29  | 113  | 7   |     | 101  | 58   | .322 | .456 | .657 | 1.114 | 217  | 284  |     | 6   | 3   |    |     | *071/38  |        |
| 1920    | 25     | NYY | AL | 142  | 616   | 458  | 158  | 172  | 36  | 9   | 54  | 135  | 14  | 14  | 150  | 80   | .376 | .532 | .847 | 1.379 | 255  | 388  |     | 3   | 5   |    |     | *0978/31 |        |
| 1921    | 26     | NYY | AL | 152  | 693   | 540  | 177  | 204  | 44  | 16  | 59  | 168  | 17  | 13  | 145  | 81   | .378 | .512 | .846 | 1.359 | 238  | 457  |     | 4   | 4   |    |     | *078/31  |        |
| 1922    | 27     | NYY | AL | 110  | 496   | 406  | 94   | 128  | 24  | 8   | 35  | 96   | 2   | 5   | 84   | 80   | .315 | .434 | .672 | 1.106 | 182  | 273  |     | 1   | 4   |    |     | *079/3   |        |
| 1923    | 28     | NYY | AL | 152  | 697   | 522  | 151  | 205  | 45  | 13  | 41  | 130  | 17  | 21  | 170  | 93   | .393 | .545 | .764 | 1.309 | 239  | 399  |     | 4   | 3   |    |     | *097/83  | MVP-1  |
| 1924    | 29     | NYY | AL | 153  | 681   | 529  | 143  | 200  | 39  | 7   | 46  | 124  | 9   | 13  | 142  | 81   | .378 | .513 | .739 | 1.252 | 220  | 391  |     | 4   | 6   |    |     | *097/8   |        |
| 1925    | 30     | NYY | AL | 98   | 426   | 359  | 61   | 104  | 12  | 2   | 25  | 67   | 2   | 4   | 59   | 68   | .290 | .393 | .543 | .936  | 137  | 195  |     | 2   | 6   |    |     | 097      |        |
| 1926    | 31     | NYY | AL | 152  | 652   | 495  | 139  | 184  | 30  | 5   | 47  | 153  | 11  | 9   | 144  | 76   | .372 | .516 | .737 | 1.253 | 225  | 365  |     | 3   | 10  |    |     | *079/3   |        |
| 1927    | 32     | NYY | AL | 151  | 691   | 540  | 158  | 192  | 29  | 8   | 60  | 165  | 7   | 6   | 137  | 89   | .356 | .486 | .772 | 1.258 | 225  | 417  |     | 0   | 14  |    |     | *097     |        |
| 1928    | 33     | NYY | AL | 154  | 684   | 536  | 163  | 173  | 29  | 8   | 54  | 146  | 4   | 5   | 137  | 87   | .323 | .463 | .709 | 1.172 | 206  | 380  |     | 3   | 8   |    |     | *097     |        |
| 1929    | 34     | NYY | AL | 135  | 587   | 499  | 121  | 172  | 26  | 6   | 46  | 154  | 5   | 3   | 72   | 60   | .345 | .430 | .697 | 1.128 | 193  | 348  |     | 3   | 13  |    |     | *097     |        |
| 1930    | 35     | NYY | AL | 145  | 676   | 518  | 150  | 186  | 28  | 9   | 49  | 153  | 10  | 10  | 136  | 61   | .359 | .493 | .732 | 1.225 | 211  | 379  |     | 1   | 21  |    |     | *097/1   |        |
| 1931    | 36     | NYY | AL | 145  | 663   | 534  | 149  | 199  | 31  | 3   | 46  | 162  | 5   | 4   | 128  | 51   | .373 | .495 | .700 | 1.195 | 218  | 374  |     | 1   | 0   |    |     | *097/3   | MVP-5  |
| 1932    | 37     | NYY | AL | 133  | 589   | 457  | 120  | 156  | 13  | 5   | 41  | 137  | 2   | 2   | 130  | 62   | .341 | .489 | .661 | 1.150 | 201  | 302  |     | 2   | 0   |    |     | *097/3   | MVP-6  |
| 1933 🖈  | 38     | NYY | AL | 137  | 576   | 459  | 97   | 138  | 21  | 3   | 34  | 104  | 4   | 5   | 114  | 90   | .301 | .442 | .582 | 1.023 | 176  | 267  |     | 2   | 0   |    |     | *097/31  | AS     |
| 1934 🖈  | 39     | NYY | AL | 125  | 471   | 365  | 78   | 105  | 17  | 4   | 22  | 84   | 1   | 3   | 104  | 63   | .288 | .448 | .537 | .985  | 160  | 196  |     | 2   | 0   |    |     | *097     | AS     |
| 1935    | 40     | BSN | NL | 28   | 92    | 72   | 13   | 13   | 0   | 0   | 6   | 12   | 0   |     | 20   | 24   | .181 | .359 | .431 | .789  | 119  | 31   | 2   | 0   | 0   |    |     | 07/9     |        |
| 22 Yrs  |        |     |    | 2503 | 10622 | 8399 | 2174 | 2873 | 506 | 136 | 714 | 2214 | 123 | 117 | 2062 | 1330 | .342 | .474 | .690 | 1.164 | 206  | 5793 | 2   | 43  | 113 |    |     |          |        |
| 162 Ga  | me A   | vg. |    | 162  | 687   | 544  | 141  | 186  | 33  | 9   | 46  | 143  | 8   |     | 133  | 86   | .342 | .474 | .690 | 1.164 | 206  | 375  |     | 3   | 7   |    |     |          |        |
|         |        |     |    | G    | PA    | AB   | R    | н    | 2B  | 3B  | HR  | RBI  | SB  | CS  | BB   | SO   | BA   | OBP  | SLG  | OPS   | OPS+ | TB   | GDP | HBP | SH  | SF | IBB | Pos      | Awards |
| NYY (1  | 5 yrs) | )   |    | 2084 | 9198  | 7217 | 1959 | 2518 | 424 | 106 | 659 | 1978 | 110 | 117 | 1852 | 1122 | .349 | .484 | .711 | 1.195 | 209  | 5131 |     | 35  | 94  |    |     |          |        |
| BOS (6  | yrs)   |     |    | 391  | 1332  | 1110 | 202  | 342  | 82  | 30  | 49  | 224  | 13  | 0   | 190  | 184  | .308 | .413 | .568 | .981  | 190  | 631  |     | 8   | 19  |    |     |          |        |
| BSN (1  | yr)    |     |    | 28   | 92    | 72   | 13   | 13   | 0   | 0   | 6   | 12   | 0   |     | 20   | 24   | .181 | .359 | .431 | .789  | 119  | 31   | 2   | 0   | 0   |    |     |          |        |
| AL (21  | yrs)   |     |    | 2475 | 10530 | 8327 | 2161 | 2860 | 506 | 136 | 708 | 2202 | 123 | 117 | 2042 | 1306 | .343 | .475 | .692 | 1.167 | 207  | 5762 |     | 43  | 113 |    |     |          |        |
| NL (1 y | r)     |     |    | 28   | 92    | 72   | 13   | 13   | 0   | 0   | 6   | 12   | 0   |     | 20   | 24   | .181 | .359 | .431 | .789  | 119  | 31   | 2   | 0   | 0   |    |     |          |        |

## **Baseball Questions**

- How to best measure individual player's skill, value or performance?
- How fair do trades between teams work out?
- What is the trajectory of player's performances as they mature and age?
- To what extent does batting performance correlate with the position played?

# **Demographic Questions**


- Do left-handed people have shorter lifespans than right-handers?
- How often do people return to where they were born?
- Do player salaries reflect past, present, or future performance?
- Are heights and weights increasing in the population?

# **Google Ngrams**

- Presents an annual time series of the frequency of every "popular" word/phrase with 1 to 5 words occurs in scanned books.
- `Popular' means appears >40 times in total.
- Google has scanned about 15% of all books ever published, making this resource quite comprehensive.

# **Google Ngram Viewer**

#### Google books Ngram Viewer

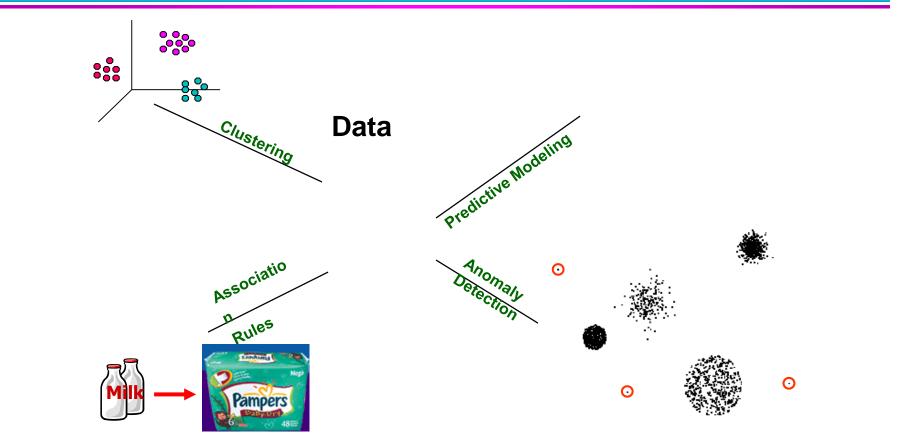


Run your own experiment! Raw data is available for download here.

# **Ngram Questions**

- How has the amount of cursing changed over time?
- What is the lifespan of fame and technologies? Is it increasing/decreasing?
- How often do new words emerge? Do they stay in common usage?
- What words are associated with other words, i.e. can you build a language model?

## **NYC Taxi Cab Data**


- Gives driver/owner, pickup/dropoff location, and fare data for every taxi trip taken.
- Data obtained from NYC via Freedom of Information Act Request (FOA)

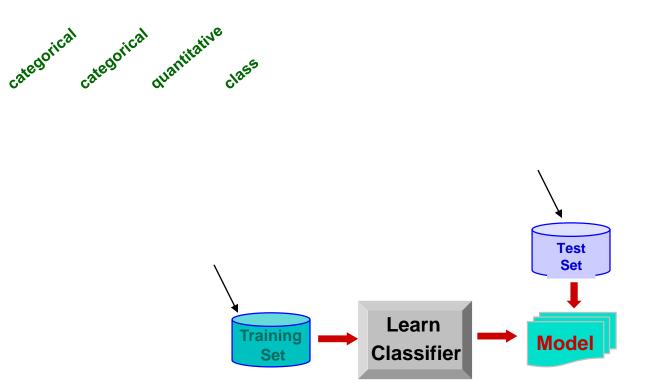
| 4  |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
|----|--------------------|----------------|-----------|-----------------|-----------------|-----------------|------------|--------------|---------------|-----------------|-----------------|-------------------|------------------|
| 5  | Trip data, 2013 -> |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 6  |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 7  | medallion          | hack_license   | vendor_id | rate_code       | pickup_datetime | dropoff_datetim | passenger_ | c trip_time_ | trip_distance | pickup_longitud | pickup_latitude | dropoff_longitude | dropoff_latitude |
| 8  | 89D227B655E5C82AE  | BA96DE419E7116 | CMT       | 1               | 1/1/13 15:11    | 1/1/13 15:18    | 4          | 382          | 1             | -73.978165      | 40.757977       | -73.989838        | 40.751171        |
| 9  | 0BD7C8F5BA12B88E0  | 9FD8F69F0804BD | CMT       | 1               | 1/6/13 0:18     | 1/6/13 0:22     | 1          | 259          | 1.5           | -74.006683      | 40.731781       | -73.994499        | 40.75066         |
| 10 | 0BD7C8F5BA12B88E0  | 9FD8F69F0804BD | CMT       | 1               | 1/5/13 18:49    | 1/5/13 18:54    | 1          | 282          | 1.1           | -74.004707      | 40.73777        | -74.009834        | 40.726002        |
| 11 |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 12 |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 13 |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 14 | Fare data, 2013 -> |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 15 |                    |                |           |                 |                 |                 |            |              |               |                 |                 |                   |                  |
| 16 | medallion          | hack_license   | vendor_id | pickup_datetime | fare_amount     | surcharge       | mta_tax    | tip_amou     | tolls_amount  | total_amount    |                 |                   |                  |
| 17 | 89D227B655E5C82AE  | BA96DE419E7116 | CMT       | 1/1/13 15:11    | 6.5             | 0               | 0.5        | 0            | 0             | 7               |                 |                   |                  |
| 18 | 0BD7C8F5BA12B88E0  | 9FD8F69F0804BD | CMT       | 1/6/13 0:18     | 6               | 0.5             | 0.5        | 0            | 0             | 7               |                 |                   |                  |
| 19 | 0BD7C8F5BA12B88E0  | 9FD8F69F0804BD | CMT       | 1/5/13 18:49    | 5.5             | 1               | 0.5        | 0            | 0             | 7               |                 |                   |                  |

## **Taxicab Questions**

- How much do drivers make each night?
- How far do they travel?
- How much slower is traffic during rush hour?
- Where are people traveling to/from at different times of the day?
- Do faster drivers get tipped better?
- Where should drivers go to pick up their next fare?

### Machine Learning Tasks ....




### **Predictive Modeling: Classification**

 Find a model for class attribute as a function of the values of other attributes

Model for predicting credit worthiness

Class

### **Classification Example**



### **Examples of Classification Task**

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil







### **Classification: Application 1**

### Fraud Detection

- Goal: Predict fraudulent cases in credit card transactions.
- Approach:
  - Use credit card transactions and the information on its account-holder as attributes.
    - When does a customer buy, what does he buy, how often he pays on time, etc
  - Label past transactions as fraud or fair transactions. This forms the class attribute.
  - Learn a model for the class of the transactions.
  - Use this model to detect fraud by observing credit card transactions on an account.

### **Classification: Application 2**

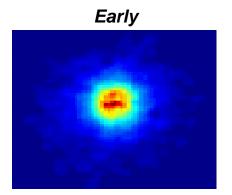
- Churn prediction for telephone customers
  - Goal: To predict whether a customer is likely to be lost to a competitor.

### - Approach:

- Use detailed record of transactions with each of the past and present customers, to find attributes.
  - How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc.
- Label the customers as loyal or disloyal.
- Find a model for loyalty.

### **Classification: Application 3**

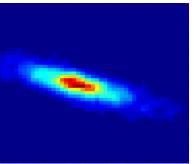
- Sky Survey Cataloging
  - Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).


- 3000 images with 23,040 x 23,040 pixels per image.

### – Approach:

- Segment the image.
- Measure image attributes (features) 40 of them per object.
- Model the class based on these features.
- Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

### **Classifying Galaxies**


Courtesy: http://aps.umn.edu

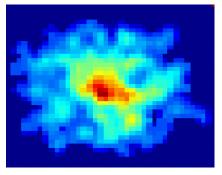


#### Class:

• Stages of Formation

#### Intermediate



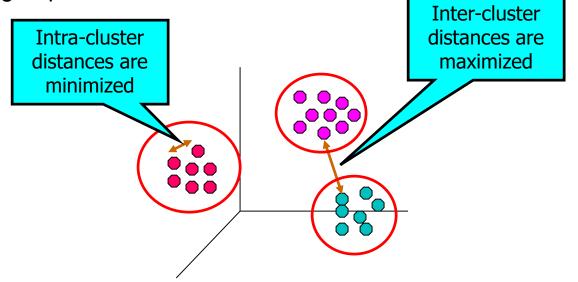

#### Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

#### **Attributes:**

- Image features,
- Characteristics of light waves received, etc.

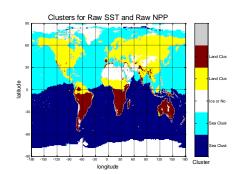
Late



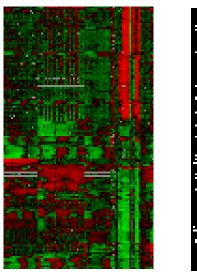

### Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
  - Predicting sales amounts of new product based on advertising expenditure.
  - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
  - Time series prediction of stock market indices.

### Clustering


 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups




### **Applications of Cluster Analysis**

#### Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations
- Summarization
  - Reduce the size of large data sets



Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.



**Courtesy: Michael Eisen** 

### **Clustering: Application 1**

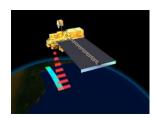
### Market Segmentation:

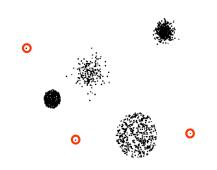
 Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.

#### - Approach:

- Collect different attributes of customers based on their geographical and lifestyle related information.
- Find clusters of similar customers.
- Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

# **Clustering: Application 2**


- Document Clustering:
  - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
  - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.




Enron email dataset

# **Deviation/Anomaly/Change Detection**

- Detect significant deviations from normal behavior
- Applications:
  - Credit Card Fraud Detection
  - Network Intrusion Detection
  - Identify anomalous behavior from sensor networks for monitoring and surveillance.
  - Detecting changes in the global forest cover.







## **Motivating Challenges**

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis

### **DS Career path**

- Graduates of data science program will mostly, and preferably, work as Data Scientists
- Data Scientists can work in any type of organization:
  - Private
  - Governmental
  - Non-for-Profit



#### Industries


- Any organization can benefit from the data they have, so data scientists can work in any industry:
  - Financial Institutions (E.g., Banks)
  - Government agencies (E.g., Civil Status and Passports Department and Police Department)
  - Healthcare (E.g., Hospitals)
  - Online platforms (E.g., Uber)
  - Large Retailers (E.g., Carrefour and Amazon)
  - Agricultural Companies
  - And much more …




- Data scientists usually need to build models of verified and validated data sets
- These models will be used by the employer to predict, recommend, or evaluate any future business decision



- For example, a data scientist, working for a hospital, can build a data model that predicts the best treatment for a specific patient
- The data scientist will use the data that was collected by the hospital about the patients and the treatments that worked and did not work for them in the past.




- Another example could be a data scientist, working for the police department, can build a data model that predicts the location and time of the next crime before it happens
- The data scientist will use the data that was collected by the police department about the previous crimes to build the proposed model



- Another example could be a data scientist, working for a large retailer, can build a data model that predicts the demand for certain products and services
- The data scientist will use the data that was collected by the retailer about the previous purchasing transactions
- The data scientist may use data that is provided by external entities



- Before building the model, data scientist usually need to clean and normalize the data
- Data could be collected from internal sources or/and external sources
- Data scientists need to communicate with data management guys to make sure that necessary data is being collected
  - Data compliance department should be involved to make sure that data collection is properly handled from a legal perspective



## **More Opportunities**

- In addition to working as data scientists, graduates of data science program can work as software development engineers
- In this field, they will mostly specialize in developing platforms that help data scientists in their jobs
- They also can develop dashboards that present business intelligence charts and reports to users



#### **CIS Career path**

- Graduates of Computer Information Systems (CIS) program can pursue a job in of the following fields:
  - Business Analysis
  - Software Development
  - System Implementation



- CIS is an interdisciplinary program that encompasses technology and business courses
- This makes the graduates of this program knowledgeable about how business works and how technology can make businesses more efficient and more effective



- People who have knowledge about the technology only will have the following issues while working in the software development field:
  - Difficulty in developing a software that satisfies the business requirements
  - Difficulty in architecting the software systems according to the international standards
  - Difficulty in maintaining existing systems due to lack of knowledge about the business behind them



#### Example

- CIS program exposes students to healthcare information systems
- When a CIS graduate joins a software development team that is responsible for developing an electronic health record (EHR), he/she will be already aware of the features and functionality of the proposed system



#### You as a Business Analyst

- You will help customers define their requirements of any proposed software system
- Because you are already aware of how existing systems work, you can make notes and suggestions on how the proposed software system should look like
- Also, It is less likely you will misinterpret the requirements provided by customers



#### You as a Software Developer

- You will write code to make a software system
- Because you are already aware of how business works, you will be able to choose the right architecture for the system
- The right architecture is one that supports any future improvements without making radical changes to the existing architecture



#### **You as a System** Implementer

- You will help users use the software system the right way
- Because you are already aware of how business works, you will be able to provide a very helpful advice on how the software should be used and utilized

