

CY 411 Reverse Software Engineering

Review of Cryptography

Dr. Qasem Abu Al-Haija

Department of Cybersecurity Faculty of Computer & Information Technology Jordan University of Science and Technology

Cryptography

- Cryptography
 - Original meaning: The art of secret writing
 - Becoming a science that relies on mathematics (number theory, algebra)
 - Process data into unintelligible form, reversible, without data loss
 - ■Usually, one-to-one

Encryption/Decryption

Plaintext: a message in its original form

- **Ciphertext**: a message in the transformed, unrecognized form
- **Encryption**: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- **Key:** the value used to control encryption/decryption

Cryptanalysis (algorithms are known)

- Definition: Assume the encryption/decryption algorithms are known. Get the keys
- **Ciphertext only:**
 - Analyze only with the ciphertext
 - Example: Exhaustive search until "recognizable plaintext"
 - Smarter ways available
- Known plaintext:
 - Secret may be revealed (by spy, time). Thus <ciphertext, plaintext> pair is obtained
- Chosen plaintext:
 - Choose text, get encrypted
 - Useful if limited set of messages

Security of An Encryption Algorithm

Unconditionally secure

- It is impossible to decrypt the ciphertext
- One-time pad (the key is as long as the plaintext)

 $C_i = P_i \oplus k_i$

Computationally secure

- The cost of breaking the cipher exceeds the value of the encrypted information
- The time required to break the cipher exceeds the useful lifetime of the information

Secret Keys v.s. Secret Algorithms

- We can achieve better security if we keep the algorithms secret
- Hard to keep secret if used widely
- Reverse engineering, social engineering
- Example: in the Military world, Keep algorithms secret (Avoid giving enemy good ideas). The military has access to the public domain knowledge anyway.

Publish the algorithms

- Security of the algorithms depends on the secrecy of the keys
- Less unknown vulnerability if all the smart (good) people in the world examine the algorithms
- Example: In the Commercial world, we publish the algorithm (Wide review, trust)
 CY 411: Reverse Engineering 6

Some Trivial Codes

CY 411: Reverse Engineering

Some Trivial Codes

http://en.wikipedia.org/wiki/Letter_frequencies

DCaesar cipher

- Substitution cipher
- Replace each letter with the one 3 letters later
- $\blacksquare A \rightarrow D, B \rightarrow E$

hellokhoor

CY 411: Reverse Engineering

а	0	е	4	i	8	m	12	q	16	u	20	У	24
b	1	f	5	j	9	n	13	r	17	V	21	Ζ	25
С	2	g	6	×	10	0	14	S	18	W	22		
d	3	h	7		11	р	15	t	19	X	23		

DAffine Cipher

- Encoding letters as numbers [0, 25]
- $E_{a,b}(x)=(ax+b)%26$; (a,b) is the key □ Reduction modulo N%m: N=qm+r, O≤r<m; 7%6=? □ $E_{3,11}(a)=?$
- Multiple round affine cipher $E_{a,b}(E_{a,b}(E_{a,b}(x)))$

DPoly-alphabetic Ciphers

A letter may be encrypted into different letters from time to time

- $\ensuremath{\square}$ All the previous codes are based on substitution
- Transposition (permutation) Columnar Transposition
- 1. Write in rows of fixed length
- 2. Read column by column in a scrambled order

Кеу							
	4	3	ĺ	Ź	5	Ġ	Ż
Plaintext:	Α	Т	Т	Α	С	K	Ρ
	0	S	Т	Р	0	N	E
	D	U	Ν	Т	Ι	L	Т
	W	0	Α	Μ	X	Y	Ζ

Ciphertext: <u>TTNAAPTMTSUO</u>AODW<u>COIX</u>KNLY<u>PETZ</u>

Columnar Transposition

DPlaintext

The permutation (transposition) is defined by the alphabetical order of the letters within the keyword

EVLNE ACDTK ESEAQ ROFOJ DEECU WIREE

CY 411: Reverse Engineering

One time pad

$\Box E(x_1|...|x_n) = (x_1 + k_1) \% 26 |...|(x_n + k_n) \% 26$ $\Box Where is it used?$

Types of Cryptography and their Applications

Types of Cryptography

□Number of keys

- Hash functions: no key
- <u>Secret key cryptography</u>: one key
- Public key cryptography: two keys public, private
- $\ensuremath{\square}\xspace$ The way in which the plaintext is processed
 - Block cipher: divides input elements into blocks
 - Stream cipher: process one element (e.g., byte) a time

Secret Key Cryptography

Same key is used for encryption and decryption

Also known as

- Symmetric cryptography
- Conventional cryptography

Secret Key Cryptography (Cont.)

□Basic technique

- Product cipher
- Multiple applications of interleaved substitutions and permutations

Secret Key Cryptography (Cont.)

- □Ciphertext approximately the same length as plaintext
- **D** Examples
 - Stream Cipher: RC4
 - Block Cipher: DES, 3DES, IDEA, AES

Applications of Secret Key Cryptography

- □ Transmitting over an insecure channel
 - Challenge: How to share the key?
- Secure Storage on insecure media
- Integrity check
 - Message integrity code (MIC)

Authentication Using Secret Key Cryptography

□ Challenge-response

- **I** To prove the other party knows the secret key
- Must be secure against chosen plaintext attack

- □ Invented/published in 1975 (?)
- □ A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- □ Much slower than secret key cryptography
- 🗖 Also known as
 - Asymmetric cryptography

Applications of Public Key Cryptography

Data transmission:

Alice encrypts m_a using Bob's public key e_B , Bob decrypts m_a using his private key d_B

□Storage:

Can create a safety copy: using public key of trusted person

Naive digital signature

- Only the party with the private key can create a digital signature
- The digital signature is verifiable by anyone who knows the public key
- □ The signer cannot deny that he/she has done so

Authentication Using Public Key Cryptography

□ No need to store secrets, only need public keys

Secret key cryptography: need to share secret key for every person to communicate with

Applications of Public Key Cryptography (Cont.)

DKey exchange

Establish a common session key between two parties

Hash Algorithms

Also known as

- Message digests
- One-way transformations
- One-way functions
- Hash functions
- \Box Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits (16 bytes or 20 bytes)

Hash Algorithms (Cont.)

- Desirable properties of hash functions
 - <u>Performance</u>: Easy to compute *H*(*m*)
 - ■<u>One-way property</u>: Given H(m) but not m, it's difficult to find m
 - <u>Weak collision free</u>: Given H(m), it's difficult to find m' such that H(m') = H(m).
 - Strong collision free: Computationally infeasible to find m_1 , m_2 such that $H(m_1) = H(m_2)$

CY 411: Reverse Engineering

Applications of Hash Functions (Cont.)

□Password hashing

- Doesn't need to know password to verify it
- Store H(password|salt) and salt, and compare it with the user-entered password
 Salt makes dictionary attack more difficult
- □Message integrity
 - ■Keyed hash

□Agree on a secret key *k*

 $\Box Compute H(m|k) and send with m$

But doesn't require encryption algorithm, so the technology is exportable